Towards dynamic classification completeness in Twitter

Dimitris Milioris
{"title":"Towards dynamic classification completeness in Twitter","authors":"Dimitris Milioris","doi":"10.1109/EUSIPCO.2016.7760418","DOIUrl":null,"url":null,"abstract":"In this paper we study the application of Matrix Completion in topic detection and classification in Twitter. The proposed method first employs Joint Complexity to perform topic detection based on score matrices. Based on the spatial correlation of tweets and the spatial characteristics of the score matrices, we apply a novel framework which extends the Matrix Completion to build dynamically complete matrices from a small number of random sample Joint Complexity scores. The experimental evaluation with real data from Twitter presents the topic detection accuracy based on complete reconstructed matrices, and thus reducing the exhaustive computation of Joint Complexity scores.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the application of Matrix Completion in topic detection and classification in Twitter. The proposed method first employs Joint Complexity to perform topic detection based on score matrices. Based on the spatial correlation of tweets and the spatial characteristics of the score matrices, we apply a novel framework which extends the Matrix Completion to build dynamically complete matrices from a small number of random sample Joint Complexity scores. The experimental evaluation with real data from Twitter presents the topic detection accuracy based on complete reconstructed matrices, and thus reducing the exhaustive computation of Joint Complexity scores.
迈向Twitter的动态分类完备性
本文研究了矩阵补全在Twitter话题检测和分类中的应用。该方法首先利用联合复杂度进行基于分数矩阵的主题检测。基于推文的空间相关性和评分矩阵的空间特征,我们采用了一种扩展矩阵补全的新框架,从少量随机样本的联合复杂度评分中构建动态完整矩阵。利用Twitter的真实数据进行实验评估,提出了基于完全重构矩阵的主题检测精度,从而减少了联合复杂度分数的穷举计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信