{"title":"700 V/2.5 A Normally-off Ultrathin-barrier AlGaN(<6nm)/GaN MIS-HEMTs with Improved Gate Overdrive Window and PBTI","authors":"T. Luan, Sen Huang, Yixu Yao, Q. Jiang, Yuhao Wang, Yifei Huang, Chao Feng, Xinhua Wang, Xinyu Liu, Ronghua Wang, Yongshuo Ren, Wanxi Cheng, Huinan Liang","doi":"10.1109/ISPSD57135.2023.10147548","DOIUrl":null,"url":null,"abstract":"700 V/2.5 A enhancement-mode (E-mode) ultrathin-barrier (UTB)-AlGaN (<6nm)/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) device was demonstrated on 6-inch GaN-on-Si wafers without AlGaN barrier recess. A combination of plasma-enhanced atomic-layer-deposited (PEALD) AlN and low-pressure chemical-vapor-deposited (LPCVD) SiNx passivation layer is adopted for the recovery of the two-dimensional electron gas (2DEG) in the access region of the E-mode UTB-AlGaN/GaN MIS-HEMTs. Compared to a controlled MOS-Channel-HEMT (MOSC-HEMT) with a fully recessed gate, the fabricated AlGaN-recess-free E-mode GaN-on-Si MIS-HEMTs exhibit a threshold voltage ($V_{\\text{TH}}$) of 0.1 V with good uniformity, a maximum drain current of 2.5 A, and a breakdown voltage over 700 V. The device also features a decent gate overdrive window and positive bias temperature instability (PBTI). The UTB-AlGaN/GaN-on-Si technology platform is highly preferred for an AlGaN-recess-free fabrication and integration of GaN-based power devices and ICs.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
700 V/2.5 A enhancement-mode (E-mode) ultrathin-barrier (UTB)-AlGaN (<6nm)/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) device was demonstrated on 6-inch GaN-on-Si wafers without AlGaN barrier recess. A combination of plasma-enhanced atomic-layer-deposited (PEALD) AlN and low-pressure chemical-vapor-deposited (LPCVD) SiNx passivation layer is adopted for the recovery of the two-dimensional electron gas (2DEG) in the access region of the E-mode UTB-AlGaN/GaN MIS-HEMTs. Compared to a controlled MOS-Channel-HEMT (MOSC-HEMT) with a fully recessed gate, the fabricated AlGaN-recess-free E-mode GaN-on-Si MIS-HEMTs exhibit a threshold voltage ($V_{\text{TH}}$) of 0.1 V with good uniformity, a maximum drain current of 2.5 A, and a breakdown voltage over 700 V. The device also features a decent gate overdrive window and positive bias temperature instability (PBTI). The UTB-AlGaN/GaN-on-Si technology platform is highly preferred for an AlGaN-recess-free fabrication and integration of GaN-based power devices and ICs.