Forecasting of Immigrants in Canada using Forecasting models

S. Pandher, Arzu Sardarli, Andrei Volodin
{"title":"Forecasting of Immigrants in Canada using Forecasting models","authors":"S. Pandher, Arzu Sardarli, Andrei Volodin","doi":"10.37119/jpss2022.v20i1.511","DOIUrl":null,"url":null,"abstract":"In Canada, the number of international students, temporary workers and refugees from every part of the world grows each year. Therefore, forecasting immigration is important for the economy of Canada and Labor Market. In this regard, four forecasting approaches have been applied to the annual data of immigrants for the period 2000-2019. The accuracy of Moving average (MA), Autoregressive (AR), Autoregressive moving average (ARMA), Autoregressive integrated moving average (ARIMA) models were checked via comparing Akaike’s information criteria(AIC), Bayesian information criteria (BIC), Mean error (ME), Root mean square error(RMSE), Mean absolute error (MAE), Mean percentage error (MPE), Mean absolute percentage error (MAPE) and Mean absolute scaled error (MASE) and graphical approaches such as ACF plots of residuals. Experimental results showed that ARIMA (1,2,4) is the best-fitted model for forecasting immigrants in Canada. Selected forecasting approaches are applied to predict immigrants for five years from 2020-2024.","PeriodicalId":161562,"journal":{"name":"Journal of Probability and Statistical Science","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37119/jpss2022.v20i1.511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Canada, the number of international students, temporary workers and refugees from every part of the world grows each year. Therefore, forecasting immigration is important for the economy of Canada and Labor Market. In this regard, four forecasting approaches have been applied to the annual data of immigrants for the period 2000-2019. The accuracy of Moving average (MA), Autoregressive (AR), Autoregressive moving average (ARMA), Autoregressive integrated moving average (ARIMA) models were checked via comparing Akaike’s information criteria(AIC), Bayesian information criteria (BIC), Mean error (ME), Root mean square error(RMSE), Mean absolute error (MAE), Mean percentage error (MPE), Mean absolute percentage error (MAPE) and Mean absolute scaled error (MASE) and graphical approaches such as ACF plots of residuals. Experimental results showed that ARIMA (1,2,4) is the best-fitted model for forecasting immigrants in Canada. Selected forecasting approaches are applied to predict immigrants for five years from 2020-2024.
用预测模型预测加拿大移民
在加拿大,来自世界各地的国际学生、临时工和难民的数量每年都在增长。因此,预测移民对加拿大经济和劳动力市场非常重要。在这方面,对2000-2019年期间的移民年度数据应用了四种预测方法。通过比较赤池信息标准(AIC)、贝叶斯信息标准(BIC)、平均误差(ME)、均方根误差(RMSE)、平均绝对误差(MAE)、平均百分比误差(MPE)、平均绝对百分比误差(MAPE)和平均绝对缩放误差(MASE)以及残差ACF图等图形方法,检验移动平均(MA)、自回归移动平均(AR)、自回归移动平均(ARMA)、自回归综合移动平均(ARIMA)模型的准确性。实验结果表明,ARIMA(1,2,4)是预测加拿大移民的最佳拟合模型。选择预测方法应用于预测2020-2024年五年内的移民。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信