{"title":"A dual band antenna design for implantable medical devices","authors":"Damla Alptekin, N. G. Gencer, F. Kucukdeveci","doi":"10.1109/BIYOMUT.2014.7026386","DOIUrl":null,"url":null,"abstract":"In this study, design and the numerical analysis of a dual band (MICS (Medical Implant Communications Service; 402-405MHz) and ISM (Industrial, Scientific and Medical; 2.4-2.48GHz)) implantable antenna which is planned to be inserted in the header of the medical device is presented. The proposed medical implantable antenna (MIA) is in the type of planar inverted F Antenna (PIFA). For miniaturization, the metallic patch of the antenna is meandered and a shorting-pin is used between the patch and ground plane. Numerical analysis of the implant antenna is carried out using HFSS (High Frequency Structure Simulator) software. It is showed that return losses in the MICS and ISM band is lower than -10 dB and the gain of the antenna is consistent with the gain characteristics of the microstrip antennas.","PeriodicalId":428610,"journal":{"name":"2014 18th National Biomedical Engineering Meeting","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2014.7026386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, design and the numerical analysis of a dual band (MICS (Medical Implant Communications Service; 402-405MHz) and ISM (Industrial, Scientific and Medical; 2.4-2.48GHz)) implantable antenna which is planned to be inserted in the header of the medical device is presented. The proposed medical implantable antenna (MIA) is in the type of planar inverted F Antenna (PIFA). For miniaturization, the metallic patch of the antenna is meandered and a shorting-pin is used between the patch and ground plane. Numerical analysis of the implant antenna is carried out using HFSS (High Frequency Structure Simulator) software. It is showed that return losses in the MICS and ISM band is lower than -10 dB and the gain of the antenna is consistent with the gain characteristics of the microstrip antennas.