{"title":"1GHz All-Fiber Laser Frequency Comb","authors":"H. Munoz-Marco, J. Abreu-Afonso, P. Pérez-Millán","doi":"10.1109/CAOL46282.2019.9019542","DOIUrl":null,"url":null,"abstract":"We demonstrate the stable and robust operation of an all-polarization-maintained ultra-high frequency Fabry–Pérot cavity passively mode-locked fiber laser. The laser operates in an all anomalous-dispersion solitonic regime, generating a 1GHz pulse train. The cavity of the laser is configured by a single fiber of a single type, highly doped and polarization maintaining. Its propierties are studied by a variety of measurements, which confirm the high stability of the laser in the spectral–both optical and electrical-domains. Pulse durations of 2.55ps, optical spectrum stability < 0.3dB, average power output of 105mW and long-term uninterrumped operation during 48h with 0.25% variation (standard deviation) in the average output power are obtained. In the RF domain, 100dB signal-to-noise ratio are measured at 200kHz offset from the fundamental harmonic frequency. The theoretical validation of our experimental results is based on solutions of the Nonlinear Schrödinger Equation.","PeriodicalId":308704,"journal":{"name":"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAOL46282.2019.9019542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the stable and robust operation of an all-polarization-maintained ultra-high frequency Fabry–Pérot cavity passively mode-locked fiber laser. The laser operates in an all anomalous-dispersion solitonic regime, generating a 1GHz pulse train. The cavity of the laser is configured by a single fiber of a single type, highly doped and polarization maintaining. Its propierties are studied by a variety of measurements, which confirm the high stability of the laser in the spectral–both optical and electrical-domains. Pulse durations of 2.55ps, optical spectrum stability < 0.3dB, average power output of 105mW and long-term uninterrumped operation during 48h with 0.25% variation (standard deviation) in the average output power are obtained. In the RF domain, 100dB signal-to-noise ratio are measured at 200kHz offset from the fundamental harmonic frequency. The theoretical validation of our experimental results is based on solutions of the Nonlinear Schrödinger Equation.