Support vector machine for face emotion detection on real time basis

E. M. Bouhabba, A. Shafie, Rini Akmeliawati
{"title":"Support vector machine for face emotion detection on real time basis","authors":"E. M. Bouhabba, A. Shafie, Rini Akmeliawati","doi":"10.1109/ICOM.2011.5937159","DOIUrl":null,"url":null,"abstract":"Enabling computer systems to recognize facial expressions and infer emotions from them in real time presents a challenging research topic. In this paper, a real-time method is proposed as a solution to the problem of facial expression classification in video sequences. We employ an automatic facial feature tracker to perform face localization and feature extraction. The facial feature displacements in the video stream are used as input to a Support Vector Machine classifier. We evaluate our method in terms of recognition accuracy for a variety of interaction and classification scenarios. Our person-dependent and person-independent experiments demonstrate the effectiveness of a support vector machine and feature tracking approach to fully automatic, unobtrusive expression recognition in live video.","PeriodicalId":376337,"journal":{"name":"2011 4th International Conference on Mechatronics (ICOM)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 4th International Conference on Mechatronics (ICOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOM.2011.5937159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Enabling computer systems to recognize facial expressions and infer emotions from them in real time presents a challenging research topic. In this paper, a real-time method is proposed as a solution to the problem of facial expression classification in video sequences. We employ an automatic facial feature tracker to perform face localization and feature extraction. The facial feature displacements in the video stream are used as input to a Support Vector Machine classifier. We evaluate our method in terms of recognition accuracy for a variety of interaction and classification scenarios. Our person-dependent and person-independent experiments demonstrate the effectiveness of a support vector machine and feature tracking approach to fully automatic, unobtrusive expression recognition in live video.
支持向量机对人脸情绪的实时检测
使计算机系统能够实时识别面部表情并从中推断情绪是一个具有挑战性的研究课题。针对视频序列中人脸表情的分类问题,提出了一种实时的人脸表情分类方法。我们采用自动人脸特征跟踪器进行人脸定位和特征提取。视频流中的面部特征位移被用作支持向量机分类器的输入。我们根据各种交互和分类场景的识别准确性来评估我们的方法。我们的个人依赖和个人独立实验证明了支持向量机和特征跟踪方法在实时视频中实现全自动、不显眼的表情识别的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信