Improving moving objects tracking using road model for laser data

Q. Baig, O. Aycard
{"title":"Improving moving objects tracking using road model for laser data","authors":"Q. Baig, O. Aycard","doi":"10.1109/IVS.2012.6232300","DOIUrl":null,"url":null,"abstract":"In this paper we have presented a fast algorithm to detect road borders from laser data. Two local search windows, one on right side of the host vehicle and the other on left, are moved right and left respectively from the current position of vehicle in map. A score function is evaluated to know the presence or absence of the road border in current search window. We have used the detected road border information to reduce false alarms in our previous work on DATMO (detection and tracking of moving objects). We also show how these information can be used to infer drivable area and the presence of intersections on the road. Results on data sets obtained from real demonstrator vehicles show that this technique can be successfully applied in real time.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we have presented a fast algorithm to detect road borders from laser data. Two local search windows, one on right side of the host vehicle and the other on left, are moved right and left respectively from the current position of vehicle in map. A score function is evaluated to know the presence or absence of the road border in current search window. We have used the detected road border information to reduce false alarms in our previous work on DATMO (detection and tracking of moving objects). We also show how these information can be used to infer drivable area and the presence of intersections on the road. Results on data sets obtained from real demonstrator vehicles show that this technique can be successfully applied in real time.
利用道路模型改进激光数据的运动目标跟踪
本文提出了一种基于激光数据的道路边界快速检测算法。两个局部搜索窗口,一个在主车辆的右侧,另一个在左侧,分别从车辆在地图上的当前位置向右和向左移动。评估分数函数以了解当前搜索窗口中道路边界的存在与否。在之前的DATMO(运动物体的检测和跟踪)工作中,我们已经使用检测到的道路边界信息来减少误报。我们还展示了如何使用这些信息来推断道路上的可驾驶区域和十字路口的存在。仿真结果表明,该方法可以成功地实现车辆的实时定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信