Deep Learning for Ventricular Arrhythmia Prediction Using Fibrosis Segmentations on Cardiac MRI Data

"Florence E. van Lieshout, Roel Klein, Martin Kolk, Kylian van Geijtenbeek, Romy Vos, S. Ruipérez-Campillo, R. Feng, B. Deb, Prasanth Ganesan, R. Knops, I. Išgum, S. Narayan, E. Bekkers, B. D. Vos, F. Tjong
{"title":"Deep Learning for Ventricular Arrhythmia Prediction Using Fibrosis Segmentations on Cardiac MRI Data","authors":"\"Florence E. van Lieshout, Roel Klein, Martin Kolk, Kylian van Geijtenbeek, Romy Vos, S. Ruipérez-Campillo, R. Feng, B. Deb, Prasanth Ganesan, R. Knops, I. Išgum, S. Narayan, E. Bekkers, B. D. Vos, F. Tjong","doi":"10.22489/cinc.2022.191","DOIUrl":null,"url":null,"abstract":"Many patients at high risk of life-threatening ventricular arrhythmias (VA) and sudden cardiac death (SCD) who received an implantable cardioverter defibrillator (ICD), never receive appropriate device therapy. The presence of fibrosis on LGE CMR imaging is shown to be associated with increased risk of VA. Therefore, there is a strong need for both automatic segmentation and quantification of cardiac fibrosis as well as better risk stratification for SCD. This study first presents a novel two-stage deep learning network for the segmentation of left ventricle myocardium and fibrosis on LGE CMR images. Secondly it aims to effectively predict device therapy in ICD patients by using a graph neural network approach which incorporates both myocardium and fibrosis features as well as the left ventricle geometry. Our segmentation network outperforms previous state-of-the-art methods on 2D CMR data, reaching a Dice score of 0.82 and 0.77 on myocardium and fibrosis segmentation, respectively. The ICD therapy prediction network reaches an AUC of 0.60 while using only CMR data and outperforms baseline methods based on current guideline markers for ICD implantation. This work lays a strong basis for future research on improved risk stratification for VA and SCD","PeriodicalId":176425,"journal":{"name":"International Conference on Computing in Cardiology","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2022.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many patients at high risk of life-threatening ventricular arrhythmias (VA) and sudden cardiac death (SCD) who received an implantable cardioverter defibrillator (ICD), never receive appropriate device therapy. The presence of fibrosis on LGE CMR imaging is shown to be associated with increased risk of VA. Therefore, there is a strong need for both automatic segmentation and quantification of cardiac fibrosis as well as better risk stratification for SCD. This study first presents a novel two-stage deep learning network for the segmentation of left ventricle myocardium and fibrosis on LGE CMR images. Secondly it aims to effectively predict device therapy in ICD patients by using a graph neural network approach which incorporates both myocardium and fibrosis features as well as the left ventricle geometry. Our segmentation network outperforms previous state-of-the-art methods on 2D CMR data, reaching a Dice score of 0.82 and 0.77 on myocardium and fibrosis segmentation, respectively. The ICD therapy prediction network reaches an AUC of 0.60 while using only CMR data and outperforms baseline methods based on current guideline markers for ICD implantation. This work lays a strong basis for future research on improved risk stratification for VA and SCD
基于心脏MRI数据纤维化分割的室性心律失常深度学习预测
许多接受植入式心律转复除颤器(ICD)的高危室性心律失常(VA)和心源性猝死(SCD)患者从未接受过适当的器械治疗。LGE CMR成像显示纤维化与VA风险增加有关。因此,迫切需要对心脏纤维化进行自动分割和量化,以及对SCD进行更好的风险分层。本研究首先提出了一种新的两阶段深度学习网络,用于LGE CMR图像上左心室心肌和纤维化的分割。其次,它旨在通过使用结合心肌和纤维化特征以及左心室几何形状的图神经网络方法有效地预测ICD患者的器械治疗。我们的分割网络在二维CMR数据上优于以前最先进的方法,在心肌和纤维化分割上分别达到0.82和0.77的Dice分数。仅使用CMR数据时,ICD治疗预测网络的AUC达到0.60,优于基于当前ICD植入指南标记的基线方法。本研究为进一步研究VA和SCD的风险分层奠定了坚实的基础
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信