Comparable estimation of network power for chi-squared Pearson functional networks and Bayes hyperbolic functional networks while processing biometric data
{"title":"Comparable estimation of network power for chi-squared Pearson functional networks and Bayes hyperbolic functional networks while processing biometric data","authors":"A. I. Ivanov, S. E. Vyatchanin, P. Lozhnikov","doi":"10.1109/SIBCON.2017.7998435","DOIUrl":null,"url":null,"abstract":"This paper aims at the comparison of the network power for Pearson-Hamming networks built using the chi-squared functional set, and Bayes-Hamming networks built using the hyperbolic functional set. To configure these networks a correlation matrix of biometric data is calculated. At the nest step the data are sorted. Low-correlated data are converted with Pearson-Hamming networks, high-correlated data are converted using Bayes-Hamming networks. The detection of a pair with high-correlated parameters r ≈ 0.99 is equal to the detection of approximately 9 pairs of low-correlated parameters r ≈ 0. The power gain for Pearson-Hamming and Bayes-Hamming networks are comparable. Low-correlated parameters dominate but they are less significant than high-correlated parameters.","PeriodicalId":190182,"journal":{"name":"2017 International Siberian Conference on Control and Communications (SIBCON)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2017.7998435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper aims at the comparison of the network power for Pearson-Hamming networks built using the chi-squared functional set, and Bayes-Hamming networks built using the hyperbolic functional set. To configure these networks a correlation matrix of biometric data is calculated. At the nest step the data are sorted. Low-correlated data are converted with Pearson-Hamming networks, high-correlated data are converted using Bayes-Hamming networks. The detection of a pair with high-correlated parameters r ≈ 0.99 is equal to the detection of approximately 9 pairs of low-correlated parameters r ≈ 0. The power gain for Pearson-Hamming and Bayes-Hamming networks are comparable. Low-correlated parameters dominate but they are less significant than high-correlated parameters.