An immune spectral clustering algorithm

Xiangrong Zhang, Xiaoxue Qian, L. Jiao, Gaimei Wang
{"title":"An immune spectral clustering algorithm","authors":"Xiangrong Zhang, Xiaoxue Qian, L. Jiao, Gaimei Wang","doi":"10.1109/ISPACS.2007.4445882","DOIUrl":null,"url":null,"abstract":"A new clustering approach namely immune spectral clustering algorithm (ISCA) is proposed in this paper. It combines spectral clustering with immune algorithm for data clustering. In this algorithm, making use of the dimension reduction ability of the spectral clustering algorithm, an immune clonal clustering algorithm is used to cluster the data points in the mapping space. Because we can get tight clusters after mapping with the spectral clustering, and the immune clonal clustering algorithm characterized by rapid convergence to global optimum and minimal sensitivity to initialization, we can get a better data clustering. Experimental results over four data sets from UCI database show the efficiency of our algorithm.","PeriodicalId":220276,"journal":{"name":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2007.4445882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new clustering approach namely immune spectral clustering algorithm (ISCA) is proposed in this paper. It combines spectral clustering with immune algorithm for data clustering. In this algorithm, making use of the dimension reduction ability of the spectral clustering algorithm, an immune clonal clustering algorithm is used to cluster the data points in the mapping space. Because we can get tight clusters after mapping with the spectral clustering, and the immune clonal clustering algorithm characterized by rapid convergence to global optimum and minimal sensitivity to initialization, we can get a better data clustering. Experimental results over four data sets from UCI database show the efficiency of our algorithm.
一种免疫谱聚类算法
提出了一种新的聚类方法——免疫谱聚类算法(ISCA)。它将光谱聚类与免疫算法相结合进行数据聚类。该算法利用谱聚类算法的降维能力,采用免疫克隆聚类算法对映射空间中的数据点进行聚类。由于光谱聚类映射后可以得到紧密的聚类,而免疫克隆聚类算法具有快速收敛到全局最优和对初始化敏感性最小的特点,可以得到较好的数据聚类。在UCI数据库的4个数据集上的实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信