Object classification from analysis of impact acoustics

R. Durst, E. Krotkov
{"title":"Object classification from analysis of impact acoustics","authors":"R. Durst, E. Krotkov","doi":"10.1109/IROS.1995.525780","DOIUrl":null,"url":null,"abstract":"We address the problem of autonomously classifying objects from the sounds they make when struck, and present results from different attempts to classify various items. We extract the two most significant spikes in the frequency domain as features, and show that accurate object classification based on these features is possible. Two techniques are discussed: a minimum-distance classifier and a hybrid minimum-distance/decision-tree classifier. Results from classifier trials show that object classification using the hybrid classifier can be done as accurately as using the minimum-distance classifier, but at lower computational expense.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We address the problem of autonomously classifying objects from the sounds they make when struck, and present results from different attempts to classify various items. We extract the two most significant spikes in the frequency domain as features, and show that accurate object classification based on these features is possible. Two techniques are discussed: a minimum-distance classifier and a hybrid minimum-distance/decision-tree classifier. Results from classifier trials show that object classification using the hybrid classifier can be done as accurately as using the minimum-distance classifier, but at lower computational expense.
基于冲击声学分析的物体分类
我们解决了从物体被击打时发出的声音自动分类物体的问题,并给出了对不同物体进行分类的不同尝试的结果。我们在频域中提取了两个最显著的峰值作为特征,并证明了基于这些特征的精确目标分类是可能的。讨论了两种技术:最小距离分类器和最小距离/决策树混合分类器。分类器试验结果表明,混合分类器的目标分类精度与最小距离分类器相当,但计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信