A comparison of Wireless Fidelity (Wi-Fi) fingerprinting techniques

Lersan B. Del Mundo, Rafael Ansay, C. Festin, R. Ocampo
{"title":"A comparison of Wireless Fidelity (Wi-Fi) fingerprinting techniques","authors":"Lersan B. Del Mundo, Rafael Ansay, C. Festin, R. Ocampo","doi":"10.1109/ICTC.2011.6082543","DOIUrl":null,"url":null,"abstract":"Among several techniques proposed for indoor positioning using IEEE 802.11 Wireless Fidelity (Wi-Fi) based networks, those that rely on fingerprinting have been demonstrated to outperform those based on lateration, angulation, and cell of origin in terms of accuracy. We compare and evaluate three Wi-Fi fingerprinting techniques that use the K-Nearest Neighbor (k-NN), Naive Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. Our experiments show that SVM-based fingerprinting outperformed both k-NN and NBC-based fingerprinting, achieving accuracies of 2 meters or better within our testbed.","PeriodicalId":191169,"journal":{"name":"ICTC 2011","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTC 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2011.6082543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Among several techniques proposed for indoor positioning using IEEE 802.11 Wireless Fidelity (Wi-Fi) based networks, those that rely on fingerprinting have been demonstrated to outperform those based on lateration, angulation, and cell of origin in terms of accuracy. We compare and evaluate three Wi-Fi fingerprinting techniques that use the K-Nearest Neighbor (k-NN), Naive Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. Our experiments show that SVM-based fingerprinting outperformed both k-NN and NBC-based fingerprinting, achieving accuracies of 2 meters or better within our testbed.
无线保真(Wi-Fi)指纹识别技术的比较
在使用基于IEEE 802.11无线保真度(Wi-Fi)的网络提出的几种室内定位技术中,那些依赖于指纹的技术已被证明在精度方面优于那些基于横向、角度和起源单元的技术。我们比较和评估了使用k-最近邻(k-NN)、朴素贝叶斯分类器(NBC)和支持向量机(SVM)算法的三种Wi-Fi指纹识别技术。我们的实验表明,基于svm的指纹识别优于k-NN和基于nbc的指纹识别,在我们的测试平台上实现了2米或更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信