Efficient automatic depth estimation for video

Richard Rzeszutek, D. Androutsos
{"title":"Efficient automatic depth estimation for video","authors":"Richard Rzeszutek, D. Androutsos","doi":"10.1109/ICDSP.2013.6622807","DOIUrl":null,"url":null,"abstract":"Estimating depth in monoscopic images and videos is a non-trivial problem due to the inherent ambiguity that arises when a 3D scene is projected onto a 2D plane (the image). But because depth estimation is so useful, many different techniques have been developed to solve this problem. Unfortunately these methods tend to be computationally intensive or require precise knowledge about the camera that captured the scene. We present a simple and straightforward technique that can estimate relative depth in video sequences using well-established computer vision principles. We also utilize recent advancements in non-linear filtering to make the estimation process computationally efficient. The result produces depth maps comparable to ground truth depths extracted by state-of-the-art estimation methods.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Estimating depth in monoscopic images and videos is a non-trivial problem due to the inherent ambiguity that arises when a 3D scene is projected onto a 2D plane (the image). But because depth estimation is so useful, many different techniques have been developed to solve this problem. Unfortunately these methods tend to be computationally intensive or require precise knowledge about the camera that captured the scene. We present a simple and straightforward technique that can estimate relative depth in video sequences using well-established computer vision principles. We also utilize recent advancements in non-linear filtering to make the estimation process computationally efficient. The result produces depth maps comparable to ground truth depths extracted by state-of-the-art estimation methods.
高效的自动深度估计视频
由于将3D场景投影到2D平面(图像)上所产生的固有模糊性,单视角图像和视频的深度估计是一个不容忽视的问题。但是由于深度估计非常有用,因此开发了许多不同的技术来解决这个问题。不幸的是,这些方法往往需要大量的计算,或者需要对拍摄场景的相机有精确的了解。我们提出了一种简单直接的技术,可以使用成熟的计算机视觉原理估计视频序列的相对深度。我们还利用非线性滤波的最新进展来提高估计过程的计算效率。结果产生的深度图可与最先进的估计方法提取的地面真值深度相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信