A quaternion antisymmetric and persymmetric matrix inverse problem from Hopfield neural networks

Haixia Chang
{"title":"A quaternion antisymmetric and persymmetric matrix inverse problem from Hopfield neural networks","authors":"Haixia Chang","doi":"10.1109/BMEI.2013.6747015","DOIUrl":null,"url":null,"abstract":"This paper considers the antisymmetric and per-symmetric solution to a matrix inverse problem AX = B for A and the optimal approximation over the quaternion field H. We first give the specified structure of the antisymmetric and persymmetric quaternion matrix. Then we derive the necessary and sufficient conditions for the existence of and the general expression for the antisymmetric and persymmetric solution of the matrix equation mentioned above. Moreover, we obtain the expression of the solution to optimal approximation problem and corresponding numerical algorithm is also presented. The work is motivated and illustrated with a problem of Hopfield neural networks.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"28 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the antisymmetric and per-symmetric solution to a matrix inverse problem AX = B for A and the optimal approximation over the quaternion field H. We first give the specified structure of the antisymmetric and persymmetric quaternion matrix. Then we derive the necessary and sufficient conditions for the existence of and the general expression for the antisymmetric and persymmetric solution of the matrix equation mentioned above. Moreover, we obtain the expression of the solution to optimal approximation problem and corresponding numerical algorithm is also presented. The work is motivated and illustrated with a problem of Hopfield neural networks.
Hopfield神经网络的四元数反对称和过对称矩阵反问题
本文研究了矩阵反问题AX = B对a的反对称和每对称解以及四元数域h上的最优逼近。首先给出了反对称和每对称四元数矩阵的特定结构。然后给出了上述矩阵方程的反对称解和过对称解存在的充分必要条件及其一般表达式。此外,我们还得到了最优逼近问题的解的表达式,并给出了相应的数值算法。这项工作的动机和说明与Hopfield神经网络的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信