Design and Development of Biogas Venturi Mixture for Stationary Diesel Engine Using Analytical and CFD Approach

H. S. Salave, A. D. Desai
{"title":"Design and Development of Biogas Venturi Mixture for Stationary Diesel Engine Using Analytical and CFD Approach","authors":"H. S. Salave, A. D. Desai","doi":"10.1115/gt2021-58784","DOIUrl":null,"url":null,"abstract":"\n The major problem to use biogas as an alternative fuel in diesel engines is the modification needed for converting the current diesel engine into an enriched biogas engine. The fuel intake system is one of the major modifications required for the diesel engine. To overcome this problem, a new biogas venturi mixture has been designed by using an analytical and Computational Fluid Dynamics (CFD) approach. With the new fuel intake system, the engine runs effectively and properly using enriched biogas as an alternative fuel. It has been observed that simple modifications are required in the fuel intake system such that convergent divergent angle, throat diameter, etc. for uniform mixing of enriched biogas and air for complete combustion of fuel for improving engine performance and efficiency. This paper focuses on the design and development of a biogas venturi mixture with different convergent angles (20°, 24° & 28°, etc.) and different throat diameters (22 mm, 21mm, 20mm, 18mm & 16 mm etc.) used in a 3.5 kW, 661CC, 4-stroke stationary diesel engines using an analytical and CFD approach. This paper concludes that 16 mm throat diameter and 24° convergent angle, the maximum pressure drop and maximum velocity observed in a uniform and homogenous mixture. Better mixing can affect combustion, which leads to improved volumetric efficiency, brake thermal efficiency with reduced emission.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The major problem to use biogas as an alternative fuel in diesel engines is the modification needed for converting the current diesel engine into an enriched biogas engine. The fuel intake system is one of the major modifications required for the diesel engine. To overcome this problem, a new biogas venturi mixture has been designed by using an analytical and Computational Fluid Dynamics (CFD) approach. With the new fuel intake system, the engine runs effectively and properly using enriched biogas as an alternative fuel. It has been observed that simple modifications are required in the fuel intake system such that convergent divergent angle, throat diameter, etc. for uniform mixing of enriched biogas and air for complete combustion of fuel for improving engine performance and efficiency. This paper focuses on the design and development of a biogas venturi mixture with different convergent angles (20°, 24° & 28°, etc.) and different throat diameters (22 mm, 21mm, 20mm, 18mm & 16 mm etc.) used in a 3.5 kW, 661CC, 4-stroke stationary diesel engines using an analytical and CFD approach. This paper concludes that 16 mm throat diameter and 24° convergent angle, the maximum pressure drop and maximum velocity observed in a uniform and homogenous mixture. Better mixing can affect combustion, which leads to improved volumetric efficiency, brake thermal efficiency with reduced emission.
固定式柴油机沼气文丘里混合气的设计与开发
在柴油发动机中使用沼气作为替代燃料的主要问题是将目前的柴油发动机转化为富沼气发动机所需要的改造。进气系统是柴油机需要进行的主要改装之一。为了克服这一问题,利用分析和计算流体动力学(CFD)方法设计了一种新的沼气文丘里混合气。使用新的燃料进气系统,发动机可以使用富集的沼气作为替代燃料,从而有效地正常运行。据观察,进气系统需要进行简单的修改,如收敛发散角、喉道直径等,使富集的沼气与空气均匀混合,使燃料完全燃烧,从而提高发动机的性能和效率。本文主要采用分析和CFD方法,设计和开发了不同会聚角(20°、24°和28°等)和不同喉道直径(22 mm、21mm、20mm、18mm和16 mm等)的沼气文丘里混合气,用于3.5 kW、661CC、四冲程固定式柴油发动机。本文得出喉部直径为16 mm、会聚角为24°时,均质混合气的最大压降和最大速度。更好的混合可以影响燃烧,从而提高容积效率,制动热效率和减少排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信