Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis

Julia Rosenzweig, E. Brito, H. Kobialka, M. Akila, Nico M. Schmidt, Peter Schlicht, Jan David Schneider, Fabian Hüger, M. Rottmann, Sebastian Houben, Tim Wirtz
{"title":"Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis","authors":"Julia Rosenzweig, E. Brito, H. Kobialka, M. Akila, Nico M. Schmidt, Peter Schlicht, Jan David Schneider, Fabian Hüger, M. Rottmann, Sebastian Houben, Tim Wirtz","doi":"10.1109/ivworkshops54471.2021.9669248","DOIUrl":null,"url":null,"abstract":"Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results.We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporating controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results.We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporating controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians.
基于仿真的测试验证:用标签到图像合成绕过域移位
许多机器学习应用程序可以从模拟数据中受益,以进行系统验证-特别是如果真实数据难以获得或注释。然而,由于模拟容易在实际数据的基础上产生域偏移,因此验证所得结果的可转移性至关重要。我们提出了一个新的框架,由生成式标签到图像的合成模型和不同的可转移性措施组成,以检验我们可以在多大程度上将语义分割模型的测试结果从合成数据转移到等效的实际数据。稍加修改,我们的方法就可以扩展到,例如,一般的多类分类任务。基于可转移性分析,我们的方法还允许通过结合受控模拟进行广泛的测试。我们在驾驶场景的语义分割任务上验证了我们的方法。使用IoU的相关分析和学习鉴别器来测试可转移性。尽管后者可以区分真实测试和合成测试,但在前者中,我们观察到汽车和行人的相关性都达到了惊人的0.7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信