A highly tunable 65-nm CMOS LIF neuron for a large scale neuromorphic system

Syed Ahmed Aamir, Paul Müller, Andreas Hartel, J. Schemmel, K. Meier
{"title":"A highly tunable 65-nm CMOS LIF neuron for a large scale neuromorphic system","authors":"Syed Ahmed Aamir, Paul Müller, Andreas Hartel, J. Schemmel, K. Meier","doi":"10.1109/ESSCIRC.2016.7598245","DOIUrl":null,"url":null,"abstract":"We present the design and measurement of a continuous-time, accelerated, reconfigurable Leaky Integrate and Fire (LIF) neuron model emulated in 65-nm CMOS technology. The neuron circuit is designed as a sub-circuit of our highly integrated neuromorphic prototype chip, the “HICANN-DLS”. The design is geared towards testability and debug features, as well as area and power efficiency. Each neuron in the array integrates current from a multitude of input synapses onto an RC integrator within the synaptic input sub-circuit, where a variable resistor tunes the synaptic time constant. Linear transconductors convert voltage into an equivalent current as well as modeling the leak term, while a pulse generator circuit evokes a digital spike event. Our measurements show that the neuron successfully integrates input synaptic events ranging from a few nA to greater than 10 µA and tunes a wide range of tunable synaptic and membrane time constants. A higher membrane dynamic range of up to 1100 mV, and longer refractory times can be achieved, operating 1000 times faster than biological real-time. The design of the neuron simplifies calibration and reduces the mismatch, as multiple die measurements indicate. We demonstrate a one-to-one correspondence to software simulation for a typical computational model neuron. Due to the wide tunable range, the neuron is to be our general-purpose element of our second generation flexible neuromorphic platform for a variety of computational models.","PeriodicalId":246471,"journal":{"name":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2016.7598245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We present the design and measurement of a continuous-time, accelerated, reconfigurable Leaky Integrate and Fire (LIF) neuron model emulated in 65-nm CMOS technology. The neuron circuit is designed as a sub-circuit of our highly integrated neuromorphic prototype chip, the “HICANN-DLS”. The design is geared towards testability and debug features, as well as area and power efficiency. Each neuron in the array integrates current from a multitude of input synapses onto an RC integrator within the synaptic input sub-circuit, where a variable resistor tunes the synaptic time constant. Linear transconductors convert voltage into an equivalent current as well as modeling the leak term, while a pulse generator circuit evokes a digital spike event. Our measurements show that the neuron successfully integrates input synaptic events ranging from a few nA to greater than 10 µA and tunes a wide range of tunable synaptic and membrane time constants. A higher membrane dynamic range of up to 1100 mV, and longer refractory times can be achieved, operating 1000 times faster than biological real-time. The design of the neuron simplifies calibration and reduces the mismatch, as multiple die measurements indicate. We demonstrate a one-to-one correspondence to software simulation for a typical computational model neuron. Due to the wide tunable range, the neuron is to be our general-purpose element of our second generation flexible neuromorphic platform for a variety of computational models.
用于大规模神经形态系统的高可调谐65纳米CMOS LIF神经元
我们设计和测量了一个连续时间,加速,可重构的LIF (Leaky integrated and Fire)神经元模型,该模型采用65纳米CMOS技术仿真。神经元电路被设计为我们高度集成的神经形态原型芯片“HICANN-DLS”的子电路。该设计面向可测试性和调试功能,以及面积和功率效率。阵列中的每个神经元将来自大量输入突触的电流集成到突触输入子电路中的RC积分器上,其中可变电阻调节突触时间常数。线性传感器将电压转换为等效电流,并对泄漏项进行建模,而脉冲发生器电路则唤起数字尖峰事件。我们的测量表明,神经元成功地整合了从几个nA到大于10 μ a的输入突触事件,并调节了大范围的可调突触和膜时间常数。膜动态范围高达1100mv,耐火时间更长,运行速度比生物实时快1000倍。神经元的设计简化了校准并减少了不匹配,正如多个芯片测量所表明的那样。我们证明了一个典型的计算模型神经元的一对一对应的软件模拟。由于广泛的可调范围,神经元将成为我们第二代灵活的神经形态平台的通用元素,用于各种计算模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信