Online sketching for big data subspace learning

M. Mardani, G. Giannakis
{"title":"Online sketching for big data subspace learning","authors":"M. Mardani, G. Giannakis","doi":"10.1109/EUSIPCO.2015.7362837","DOIUrl":null,"url":null,"abstract":"Sketching (a.k.a. subsampling) high-dimensional data is a crucial task to facilitate data acquisition process e.g., in magnetic resonance imaging, and to render affordable `Big Data' analytics. Multidimensional nature and the need for realtime processing of data however pose major obstacles. To cope with these challenges, the present paper brings forth a novel real-time sketching scheme that exploits the correlations across data stream to learn a latent subspace based upon tensor PARAFAC decomposition `on the fly.' Leveraging the online subspace updates, we introduce a notion of importance score, which is subsequently adapted into a randomization scheme to predict a minimal subset of important features to acquire in the next time instant. Preliminary tests with synthetic data corroborate the effectiveness of the novel scheme relative to uniform sampling.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sketching (a.k.a. subsampling) high-dimensional data is a crucial task to facilitate data acquisition process e.g., in magnetic resonance imaging, and to render affordable `Big Data' analytics. Multidimensional nature and the need for realtime processing of data however pose major obstacles. To cope with these challenges, the present paper brings forth a novel real-time sketching scheme that exploits the correlations across data stream to learn a latent subspace based upon tensor PARAFAC decomposition `on the fly.' Leveraging the online subspace updates, we introduce a notion of importance score, which is subsequently adapted into a randomization scheme to predict a minimal subset of important features to acquire in the next time instant. Preliminary tests with synthetic data corroborate the effectiveness of the novel scheme relative to uniform sampling.
面向大数据子空间学习的在线素描
绘制高维数据(又称子采样)是促进数据采集过程的关键任务,例如在磁共振成像中,并提供负担得起的“大数据”分析。然而,多维性和对数据实时处理的需求构成了主要障碍。为了应对这些挑战,本文提出了一种新的实时绘图方案,该方案利用数据流之间的相关性来学习基于张量PARAFAC分解的潜在子空间。利用在线子空间更新,我们引入了重要性分数的概念,随后将其适应于随机化方案,以预测在下一个时间瞬间要获取的重要特征的最小子集。综合数据的初步试验证实了该方法相对于均匀采样的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信