Binary Dragonfly Algorithm and Fisher Score Based Hybrid Feature Selection Adopting a Novel Fitness Function Applied to Microarray Data

Akshata K. Naik, Venkatanareshbabu Kuppili, Damodar Reddy Edla
{"title":"Binary Dragonfly Algorithm and Fisher Score Based Hybrid Feature Selection Adopting a Novel Fitness Function Applied to Microarray Data","authors":"Akshata K. Naik, Venkatanareshbabu Kuppili, Damodar Reddy Edla","doi":"10.1109/ICAML48257.2019.00015","DOIUrl":null,"url":null,"abstract":"Microarray gene data comprises of a large number of genes and fewer samples. Feature Selection (FS) is performed to select disease-causing genes and enhance the performance of the learning model. FS algorithms can either employ a learning model or use only data information to select the features. Each of these has its own drawbacks. In this paper, we propose a hybrid method that incorporates the advantages of both these aspects to select genes. We also employ evolutionary Binary Dragonfly Algorithm (BDA) for searching an informative subset of features and Radial Basis Function Neural Network (RBFNN) as a learning model. We propose a novel fitness function that helps in the effective selection of the features in BDA. The proposed method is applied to microarray datasets, the results of which is found to be promising.","PeriodicalId":369667,"journal":{"name":"2019 International Conference on Applied Machine Learning (ICAML)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Applied Machine Learning (ICAML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAML48257.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Microarray gene data comprises of a large number of genes and fewer samples. Feature Selection (FS) is performed to select disease-causing genes and enhance the performance of the learning model. FS algorithms can either employ a learning model or use only data information to select the features. Each of these has its own drawbacks. In this paper, we propose a hybrid method that incorporates the advantages of both these aspects to select genes. We also employ evolutionary Binary Dragonfly Algorithm (BDA) for searching an informative subset of features and Radial Basis Function Neural Network (RBFNN) as a learning model. We propose a novel fitness function that helps in the effective selection of the features in BDA. The proposed method is applied to microarray datasets, the results of which is found to be promising.
采用一种新的适应度函数的二进制蜻蜓算法和基于Fisher分数的混合特征选择应用于微阵列数据
微阵列基因数据由大量的基因和较少的样本组成。进行特征选择(FS)以选择致病基因并提高学习模型的性能。FS算法既可以采用学习模型,也可以只使用数据信息来选择特征。每种方法都有自己的缺点。在本文中,我们提出了一种结合这两方面优势的杂交方法来选择基因。我们还使用进化二进制蜻蜓算法(BDA)来搜索信息丰富的特征子集,并使用径向基函数神经网络(RBFNN)作为学习模型。我们提出了一种新的适应度函数,有助于有效地选择BDA中的特征。将该方法应用于微阵列数据集,结果表明该方法是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信