{"title":"Fuzzy Sliding Mode Adaptive Control of Dual-Motor Driving Servo System","authors":"Haibo Zhao, Chengguang Wang","doi":"10.1109/ICMRA.2018.8490548","DOIUrl":null,"url":null,"abstract":"Backlash nonlinearity exists in dual-motor driving servo system, in order to weaken the adverse effects of backlash nonlinearity on the system, we first described the system model. Then we designed a multiple sliding surfaces-based fuzzy sliding mode adaptive controller combining a fuzzy approximation algorithm with sliding mode control, which we believe to be the first time for dual-motor driving servo system, and analyzed its stability. We adopted a Nussbaum function to compensate the uncertainty in the system and employed a fuzzy approximation system to approximate the unknown nonlinearity in the controller. Finally, simulation results show that fuzzy sliding mode adaptive control has not only better dynamic and steady-state performance, but also better robustness than single fuzzy control, validating the effectiveness of the proposed control algorithm.","PeriodicalId":190744,"journal":{"name":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRA.2018.8490548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Backlash nonlinearity exists in dual-motor driving servo system, in order to weaken the adverse effects of backlash nonlinearity on the system, we first described the system model. Then we designed a multiple sliding surfaces-based fuzzy sliding mode adaptive controller combining a fuzzy approximation algorithm with sliding mode control, which we believe to be the first time for dual-motor driving servo system, and analyzed its stability. We adopted a Nussbaum function to compensate the uncertainty in the system and employed a fuzzy approximation system to approximate the unknown nonlinearity in the controller. Finally, simulation results show that fuzzy sliding mode adaptive control has not only better dynamic and steady-state performance, but also better robustness than single fuzzy control, validating the effectiveness of the proposed control algorithm.