{"title":"Efficient Two-Photon Luminescence for Bioimaging Using Polymer Conjugations of Graphene Quantum Dots Based Materials","authors":"W. Kuo","doi":"10.1109/NAP.2018.8915213","DOIUrl":null,"url":null,"abstract":"In this study, examination results revealed that conjugated polymers containing nitrogen and sulfur atoms lead to a higher quantum confinement of emissive energy trapped on the surface of material (graphene quantum dot (GQD)-polymers), resulting in a high luminescence quantum yield and impressive two-photon properties. Additionally, the GQD-polymers generated nonreactive oxygen species-dependent oxidative stress on cells. Furthermore, we demonstrated the effective use of two-photon excitation-mediated high two-photon luminescence intensity in an acidic environment enableed GQD-polymers to act as a promising contrast probe. When cancer cells are labeled with specific antibody GQD-polymers conjugates, molecular-specific imaging can be performed deep into a tissue phantom with extremely high signal-to-noise ratios. In situations in which imaging depths are limited by the maximum available power that can be delivered to the three-dimensional (3D) bioimaging plane without causing damage to tissue, GQD-polymers might provide sufficient brightness to extend the maximum depth of imaging. Moreover, we demonstrated that the use of GQD-polymers can expand the capabilities of two-photon imaging to allow noninvasive 3D bioimaging of a variety of new molecular signatures.","PeriodicalId":239169,"journal":{"name":"2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP.2018.8915213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, examination results revealed that conjugated polymers containing nitrogen and sulfur atoms lead to a higher quantum confinement of emissive energy trapped on the surface of material (graphene quantum dot (GQD)-polymers), resulting in a high luminescence quantum yield and impressive two-photon properties. Additionally, the GQD-polymers generated nonreactive oxygen species-dependent oxidative stress on cells. Furthermore, we demonstrated the effective use of two-photon excitation-mediated high two-photon luminescence intensity in an acidic environment enableed GQD-polymers to act as a promising contrast probe. When cancer cells are labeled with specific antibody GQD-polymers conjugates, molecular-specific imaging can be performed deep into a tissue phantom with extremely high signal-to-noise ratios. In situations in which imaging depths are limited by the maximum available power that can be delivered to the three-dimensional (3D) bioimaging plane without causing damage to tissue, GQD-polymers might provide sufficient brightness to extend the maximum depth of imaging. Moreover, we demonstrated that the use of GQD-polymers can expand the capabilities of two-photon imaging to allow noninvasive 3D bioimaging of a variety of new molecular signatures.