Constructing Scenarios of Time Heterogeneous Series for Stress Testing

H. Vinod
{"title":"Constructing Scenarios of Time Heterogeneous Series for Stress Testing","authors":"H. Vinod","doi":"10.2139/ssrn.1987879","DOIUrl":null,"url":null,"abstract":"Heterogeneous global trends in asset prices and savings affect the macro economy. Our challenge is to use limited data to make inference regarding underlying causes. In general, government and business decision makers, FDIC type regulators and risk professionals need quantitative tools to help generate plausible scenarios of state-dependent and time heterogeneous nonstationary time series. We suggest using maximum entropy type bootstraps, recently implemented in an R software package called \"meboot.\" A new modification of meboot divides the data series into blocks and can randomly modify the (down, at or up) direction of series within each block. Our large number of resamples are then available for construction of scenarios for probabilistic stress testing. A simulation study evaluates the performance of our proposal in the context of many types of time-heterogeneity showing that it behaves better than moving block bootstraps. We apply meboot tools to stress test inference regarding Granger-causality between asset prices and world savings rates, and also to the 'Value at Risk' used in Finance.","PeriodicalId":170603,"journal":{"name":"Social Entrepreneurship eJournal","volume":"15 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Entrepreneurship eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1987879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Heterogeneous global trends in asset prices and savings affect the macro economy. Our challenge is to use limited data to make inference regarding underlying causes. In general, government and business decision makers, FDIC type regulators and risk professionals need quantitative tools to help generate plausible scenarios of state-dependent and time heterogeneous nonstationary time series. We suggest using maximum entropy type bootstraps, recently implemented in an R software package called "meboot." A new modification of meboot divides the data series into blocks and can randomly modify the (down, at or up) direction of series within each block. Our large number of resamples are then available for construction of scenarios for probabilistic stress testing. A simulation study evaluates the performance of our proposal in the context of many types of time-heterogeneity showing that it behaves better than moving block bootstraps. We apply meboot tools to stress test inference regarding Granger-causality between asset prices and world savings rates, and also to the 'Value at Risk' used in Finance.
构建时间异构序列压力测试场景
全球资产价格和储蓄的不同趋势影响着宏观经济。我们面临的挑战是使用有限的数据来推断潜在的原因。一般来说,政府和商业决策者、FDIC类型的监管机构和风险专业人士需要定量工具来帮助生成依赖状态和时间异构的非平稳时间序列的合理情景。我们建议使用最大熵型引导,最近在一个名为“meboot”的R软件包中实现。meboot的新修改将数据序列划分为块,并且可以在每个块内随机修改序列的方向(向下、向上或向上)。然后,我们的大量样本可用于构建概率压力测试的场景。仿真研究评估了我们的建议在许多类型的时间异质性背景下的性能,表明它比移动块自举表现得更好。我们将meboot工具应用于关于资产价格和世界储蓄率之间格兰杰因果关系的压力测试推断,以及金融中使用的“风险价值”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信