Response surface methodology for matrix PBGA warpage prediction

E. Egan, G. Kelly, T. O'Donovan, D. Murtagh, L. Herard
{"title":"Response surface methodology for matrix PBGA warpage prediction","authors":"E. Egan, G. Kelly, T. O'Donovan, D. Murtagh, L. Herard","doi":"10.1109/ITHERM.2000.866850","DOIUrl":null,"url":null,"abstract":"The manufacturing process of chip-scale plastic ball grid arrays (PBGAs) can cause appreciable warpage. The simultaneous manufacture of PBGAs can be accomplished by attaching a matrix of silicon dies onto a bottom layer of substrate. The resulting structure is termed a matrix PBGA. Because the matrix PBGA has too complex a structure for a simple mechanistic model, response surface methodology (RSM) is used to construct an empirical model of the warpage. The response surface model is created by regression analysis between the design parameters and data obtained through 3D finite element simulations. Another method, the dual-curvature approach, which is based on classical mechanics, is also used to predict matrix PBGA warpage. The prediction quality of the two models, is compared using three different error metrics, and the prediction variance of the response surface model is discussed. Comparison of the dual-curvature and response surface models shows the response surface estimates to conform more closely with simulation results.","PeriodicalId":201262,"journal":{"name":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2000.866850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The manufacturing process of chip-scale plastic ball grid arrays (PBGAs) can cause appreciable warpage. The simultaneous manufacture of PBGAs can be accomplished by attaching a matrix of silicon dies onto a bottom layer of substrate. The resulting structure is termed a matrix PBGA. Because the matrix PBGA has too complex a structure for a simple mechanistic model, response surface methodology (RSM) is used to construct an empirical model of the warpage. The response surface model is created by regression analysis between the design parameters and data obtained through 3D finite element simulations. Another method, the dual-curvature approach, which is based on classical mechanics, is also used to predict matrix PBGA warpage. The prediction quality of the two models, is compared using three different error metrics, and the prediction variance of the response surface model is discussed. Comparison of the dual-curvature and response surface models shows the response surface estimates to conform more closely with simulation results.
矩阵PBGA翘曲预测的响应面法
芯片级塑料球栅阵列(PBGAs)的制造过程会引起明显的翘曲。同时制造PBGAs可以通过在衬底的底层上附加硅模矩阵来完成。所得到的结构被称为矩阵PBGA。由于PBGA矩阵结构过于复杂,无法建立简单的力学模型,因此采用响应面法(RSM)构建了翘曲的经验模型。通过对设计参数与三维有限元仿真数据的回归分析,建立了响应面模型。另一种基于经典力学的双曲率法也被用于预测矩阵PBGA翘曲。用三种不同的误差度量比较了两种模型的预测质量,并讨论了响应面模型的预测方差。双曲率模型和响应面模型的比较表明,响应面估计与仿真结果更加吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信