S. Hatta, N. Soin, S. H. Abdul Rahman, Y. A. Wahab, H. Hussin
{"title":"Effects of the fin width variation on the performance of 16 nm FinFETs with round fin corners and tapered fin shape","authors":"S. Hatta, N. Soin, S. H. Abdul Rahman, Y. A. Wahab, H. Hussin","doi":"10.1109/SMELEC.2014.6920916","DOIUrl":null,"url":null,"abstract":"The rapid scaling of the CMOS technology is causing the evaluation from conventional planar MOSFETs to the FinFET architecture, particularly in the 22 nm and 14 nm technology nodes. FinFETs technologies ensure low power usage and better area utilization, as well as traditional scaling improvements. It was observed that for FinFETs, the smaller the width of the fin, the better the characteristics. It was observed that drain current characteristics of the NFinFET and PFinFET at both the linear and saturation regime would decrease in magnitude as the width of the fin was decreased. The Ion/Ioff ratio generally decreases as the width of the fin increases. The NFinFET particularly exhibits a significant drop in the Ion/Ioff of to nearly 50% for a change of fin width from 5nm to 15nm.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The rapid scaling of the CMOS technology is causing the evaluation from conventional planar MOSFETs to the FinFET architecture, particularly in the 22 nm and 14 nm technology nodes. FinFETs technologies ensure low power usage and better area utilization, as well as traditional scaling improvements. It was observed that for FinFETs, the smaller the width of the fin, the better the characteristics. It was observed that drain current characteristics of the NFinFET and PFinFET at both the linear and saturation regime would decrease in magnitude as the width of the fin was decreased. The Ion/Ioff ratio generally decreases as the width of the fin increases. The NFinFET particularly exhibits a significant drop in the Ion/Ioff of to nearly 50% for a change of fin width from 5nm to 15nm.