Biomimetic Knock-on of Ion Transport through Crown Ether-embedded Filter Membranes

Shu Zhou, Zhenyu Zhang, Y. Chen
{"title":"Biomimetic Knock-on of Ion Transport through Crown Ether-embedded Filter Membranes","authors":"Shu Zhou, Zhenyu Zhang, Y. Chen","doi":"10.1109/3M-NANO56083.2022.9941586","DOIUrl":null,"url":null,"abstract":"Designing a filter membrane that can separate Na+ and K+ ions is of great significance for the study of biomimetic ion channels. Using nonequilibrium molecular dynamics simulations, we investigated monolayer and quadrilayer graphene-embedded 18-crown-6 ether nanopores under different external voltages in solution. We showed that the crown ether nanopores exhibit Na+ ion selectivity at low electric field but turn to K+ ion selectivity at high electric field. Ion translocation time of K+ ions is longer than that of Na+ ions in the monolayer crown ether nanopore, while in the quadrilayer crown ether nanopore, ion translocation time of K+ ions is shorter than that of Na+ ions. We demonstrated a synergetic mechanism for ion transport through the filter membrane from two perspectives: free energy through the nanopore and peeling of ion hydration layer. Partially dehydrated ions pass through the nanopore in a ‘knock-on’ manner due to electrostatic repulsion. Our work highlights the application of crown ether nanopores in the field of artificial biomimetic ion channels and ion filtration.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing a filter membrane that can separate Na+ and K+ ions is of great significance for the study of biomimetic ion channels. Using nonequilibrium molecular dynamics simulations, we investigated monolayer and quadrilayer graphene-embedded 18-crown-6 ether nanopores under different external voltages in solution. We showed that the crown ether nanopores exhibit Na+ ion selectivity at low electric field but turn to K+ ion selectivity at high electric field. Ion translocation time of K+ ions is longer than that of Na+ ions in the monolayer crown ether nanopore, while in the quadrilayer crown ether nanopore, ion translocation time of K+ ions is shorter than that of Na+ ions. We demonstrated a synergetic mechanism for ion transport through the filter membrane from two perspectives: free energy through the nanopore and peeling of ion hydration layer. Partially dehydrated ions pass through the nanopore in a ‘knock-on’ manner due to electrostatic repulsion. Our work highlights the application of crown ether nanopores in the field of artificial biomimetic ion channels and ion filtration.
离子通过冠醚嵌入过滤膜的仿生敲除
设计一种能够分离Na+和K+离子的过滤膜对于仿生离子通道的研究具有重要意义。采用非平衡分子动力学模拟方法,研究了不同外部电压下单层和四层石墨烯嵌入的18冠6醚纳米孔在溶液中的作用。结果表明,冠醚纳米孔在低电场条件下具有Na+离子选择性,而在高电场条件下具有K+离子选择性。在单层冠醚纳米孔中,K+离子的离子迁移时间比Na+离子的离子迁移时间长,而在四层冠醚纳米孔中,K+离子的离子迁移时间比Na+离子的离子迁移时间短。我们从纳米孔的自由能和离子水合层的剥离两个角度论证了离子通过过滤膜的协同机制。由于静电斥力,部分脱水的离子以“撞击”的方式通过纳米孔。我们的工作重点是冠醚纳米孔在人工仿生离子通道和离子过滤领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信