Multi-fidelity simulation optimization with level set approximation using probabilistic branch and bound

David D. Linz, Hao Huang, Z. Zabinsky
{"title":"Multi-fidelity simulation optimization with level set approximation using probabilistic branch and bound","authors":"David D. Linz, Hao Huang, Z. Zabinsky","doi":"10.1109/WSC.2017.8247939","DOIUrl":null,"url":null,"abstract":"Simulated systems are often described with a variety of models of different complexity. Making use of these models, algorithms can use low complexity, “low-fidelity” models or meta-models to guide sampling for purposes of optimization, improving the probability of generating good solutions with a small number of observations. We propose an optimization algorithm that guides the search for solutions on a high-fidelity model through the approximation of a level set from a low-fidelity model. Using the Probabilistic Branch and Bound algorithm to approximate a level set for the low-fidelity model, we are able to efficiently locate solutions inside of a target quantile and therefore reduce the number of high-fidelity evaluations needed in searches. The paper provides an algorithm and analysis showing the increased probability of sampling high-quality solutions within a low-fidelity level set. We include numerical examples that demonstrate the effectiveness of the multi-fidelity level set approximation method to locate solutions.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Simulated systems are often described with a variety of models of different complexity. Making use of these models, algorithms can use low complexity, “low-fidelity” models or meta-models to guide sampling for purposes of optimization, improving the probability of generating good solutions with a small number of observations. We propose an optimization algorithm that guides the search for solutions on a high-fidelity model through the approximation of a level set from a low-fidelity model. Using the Probabilistic Branch and Bound algorithm to approximate a level set for the low-fidelity model, we are able to efficiently locate solutions inside of a target quantile and therefore reduce the number of high-fidelity evaluations needed in searches. The paper provides an algorithm and analysis showing the increased probability of sampling high-quality solutions within a low-fidelity level set. We include numerical examples that demonstrate the effectiveness of the multi-fidelity level set approximation method to locate solutions.
基于概率分支定界的水平集近似的多保真度仿真优化
仿真系统通常用各种不同复杂程度的模型来描述。利用这些模型,算法可以使用低复杂性、“低保真度”模型或元模型来指导采样以达到优化的目的,从而提高用少量观测值生成良好解的概率。我们提出了一种优化算法,该算法通过从低保真模型近似水平集来指导高保真模型上的解的搜索。使用概率分支定界算法来近似低保真模型的水平集,我们能够有效地定位目标分位数内的解,从而减少搜索中所需的高保真评估次数。本文提供了一种算法和分析,表明在低保真度水平集中采样高质量解的概率增加。我们包括数值例子,证明了多保真度水平集近似方法的有效性,以确定解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信