{"title":"Multi-fidelity simulation optimization with level set approximation using probabilistic branch and bound","authors":"David D. Linz, Hao Huang, Z. Zabinsky","doi":"10.1109/WSC.2017.8247939","DOIUrl":null,"url":null,"abstract":"Simulated systems are often described with a variety of models of different complexity. Making use of these models, algorithms can use low complexity, “low-fidelity” models or meta-models to guide sampling for purposes of optimization, improving the probability of generating good solutions with a small number of observations. We propose an optimization algorithm that guides the search for solutions on a high-fidelity model through the approximation of a level set from a low-fidelity model. Using the Probabilistic Branch and Bound algorithm to approximate a level set for the low-fidelity model, we are able to efficiently locate solutions inside of a target quantile and therefore reduce the number of high-fidelity evaluations needed in searches. The paper provides an algorithm and analysis showing the increased probability of sampling high-quality solutions within a low-fidelity level set. We include numerical examples that demonstrate the effectiveness of the multi-fidelity level set approximation method to locate solutions.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Simulated systems are often described with a variety of models of different complexity. Making use of these models, algorithms can use low complexity, “low-fidelity” models or meta-models to guide sampling for purposes of optimization, improving the probability of generating good solutions with a small number of observations. We propose an optimization algorithm that guides the search for solutions on a high-fidelity model through the approximation of a level set from a low-fidelity model. Using the Probabilistic Branch and Bound algorithm to approximate a level set for the low-fidelity model, we are able to efficiently locate solutions inside of a target quantile and therefore reduce the number of high-fidelity evaluations needed in searches. The paper provides an algorithm and analysis showing the increased probability of sampling high-quality solutions within a low-fidelity level set. We include numerical examples that demonstrate the effectiveness of the multi-fidelity level set approximation method to locate solutions.