Quantum Regression Model for the Prediction of Surface Plasmon Resonance Sensor Behaviour

K. T, S. S, V. M, Mohanraj J, V. N
{"title":"Quantum Regression Model for the Prediction of Surface Plasmon Resonance Sensor Behaviour","authors":"K. T, S. S, V. M, Mohanraj J, V. N","doi":"10.1109/WRAP54064.2022.9758179","DOIUrl":null,"url":null,"abstract":"In this paper, we made a pioneering effort for the first time to implement Quantum Neural Network regressor model to predict the sensing behavior of Surface plasmon resonance (SPR) sensor and compared the performance of the proposed model with two traditional algorithms namely Support Vector Regressor (SVR) and Artificial Neural Network (ANN) regressor. The proposed trained quantum regressor model is crucial and efficient enough as it could be used to predict the trend of the target value that is confinement loss of the SPR biosensor.","PeriodicalId":363857,"journal":{"name":"2022 Workshop on Recent Advances in Photonics (WRAP)","volume":"350 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Workshop on Recent Advances in Photonics (WRAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WRAP54064.2022.9758179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we made a pioneering effort for the first time to implement Quantum Neural Network regressor model to predict the sensing behavior of Surface plasmon resonance (SPR) sensor and compared the performance of the proposed model with two traditional algorithms namely Support Vector Regressor (SVR) and Artificial Neural Network (ANN) regressor. The proposed trained quantum regressor model is crucial and efficient enough as it could be used to predict the trend of the target value that is confinement loss of the SPR biosensor.
表面等离子体共振传感器行为预测的量子回归模型
本文首次开创性地实现了量子神经网络回归模型来预测表面等离子体共振(SPR)传感器的传感行为,并将该模型与支持向量回归(SVR)和人工神经网络回归(ANN)两种传统算法的性能进行了比较。所提出的训练后的量子回归量模型可以用来预测SPR生物传感器约束损失目标值的变化趋势,是非常重要和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信