ECG characteristic points detection using general regression neural network-based particle filters

Guojun Li, Xiaona Zhou, Shu-ting. Zhang, N. Liu
{"title":"ECG characteristic points detection using general regression neural network-based particle filters","authors":"Guojun Li, Xiaona Zhou, Shu-ting. Zhang, N. Liu","doi":"10.1109/ISBB.2011.6107669","DOIUrl":null,"url":null,"abstract":"Characteristic points (CPs) detection is still an open problem for the automatic analysis of electrocardiogram (ECG). Past Kalman Filter-Based efforts to extract CPs rely on a locally linearized approximation of the nonlinear ECG dynamical model and fail to detect all CPs accurately for strong noisy ECG. In this study, an improved particle filters-based algorithm is developed to track the dynamical ECG morphology and localize its characteristic points in strong noisy environments. Experiments on real ECG records contaminated by different coloration noise clearly show the superior performance of the presented approach over the Kalman Filter method.","PeriodicalId":345164,"journal":{"name":"International Symposium on Bioelectronics and Bioinformations 2011","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Bioelectronics and Bioinformations 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2011.6107669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Characteristic points (CPs) detection is still an open problem for the automatic analysis of electrocardiogram (ECG). Past Kalman Filter-Based efforts to extract CPs rely on a locally linearized approximation of the nonlinear ECG dynamical model and fail to detect all CPs accurately for strong noisy ECG. In this study, an improved particle filters-based algorithm is developed to track the dynamical ECG morphology and localize its characteristic points in strong noisy environments. Experiments on real ECG records contaminated by different coloration noise clearly show the superior performance of the presented approach over the Kalman Filter method.
基于广义回归神经网络的粒子滤波心电特征点检测
在心电图自动分析中,特征点检测一直是一个有待解决的问题。过去基于卡尔曼滤波的cp提取工作依赖于非线性心电动力学模型的局部线性化近似,并且无法准确检测强噪声心电的所有cp。本研究提出了一种改进的基于粒子滤波的算法,用于在强噪声环境下跟踪心电动态形态并定位其特征点。对不同颜色噪声污染的真实心电记录的实验表明,该方法优于卡尔曼滤波方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信