Parallel multi-level analytical global placement on graphics processing units

J. Cong, Yi Zou
{"title":"Parallel multi-level analytical global placement on graphics processing units","authors":"J. Cong, Yi Zou","doi":"10.1145/1687399.1687525","DOIUrl":null,"url":null,"abstract":"GPU platforms are becoming increasingly attractive for implementing accelerators because they feature a larger number of cores with improved programmability. In this paper, we describe our implementation of a state-of-the-art academic multi-level analytical placer mPL on Nvidia's massively parallel GT200 series platforms. We detail our efforts on performance tuning and optimizations. When compared to software implementation on Intel's recent generation Xeon CPU, the speed of the global placement part of mPL is 15× faster on average using a Tesla C1060 card, with comparable WL. (less than 1% WL degradation on average).","PeriodicalId":256358,"journal":{"name":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","volume":"244 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1687399.1687525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

GPU platforms are becoming increasingly attractive for implementing accelerators because they feature a larger number of cores with improved programmability. In this paper, we describe our implementation of a state-of-the-art academic multi-level analytical placer mPL on Nvidia's massively parallel GT200 series platforms. We detail our efforts on performance tuning and optimizations. When compared to software implementation on Intel's recent generation Xeon CPU, the speed of the global placement part of mPL is 15× faster on average using a Tesla C1060 card, with comparable WL. (less than 1% WL degradation on average).
在图形处理单元上并行多级分析全局放置
GPU平台对于实现加速器越来越有吸引力,因为它们具有更多的内核和改进的可编程性。在本文中,我们描述了我们在Nvidia的大规模并行GT200系列平台上实现的最先进的学术多级分析砂矿mPL。我们详细介绍了我们在性能调优和优化方面所做的努力。与英特尔最新一代至强CPU上的软件实现相比,使用特斯拉C1060卡时,mPL的全局放置部分的速度平均快15倍,并具有相当的WL。(平均WL衰减小于1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信