Delving into Macro Placement with Reinforcement Learning

Zixuan Jiang, Ebrahim M. Songhori, Shen Wang, Anna Goldie, Azalia Mirhoseini, J. Jiang, Young-Joon Lee, David Z. Pan
{"title":"Delving into Macro Placement with Reinforcement Learning","authors":"Zixuan Jiang, Ebrahim M. Songhori, Shen Wang, Anna Goldie, Azalia Mirhoseini, J. Jiang, Young-Joon Lee, David Z. Pan","doi":"10.1109/MLCAD52597.2021.9531313","DOIUrl":null,"url":null,"abstract":"In physical design, human designers typically place macros via trial and error, which is a Markov decision process. Reinforcement learning (RL) methods have demonstrated superhuman performance on the macro placement. In this paper, we propose an extension to this prior work [1]. We first describe the details of the policy and value network architecture. We replace the force-directed method with DREAMPlace for placing standard cells in the RL environment. We also compare our improved method with other academic placers on public benchmarks.","PeriodicalId":210763,"journal":{"name":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLCAD52597.2021.9531313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In physical design, human designers typically place macros via trial and error, which is a Markov decision process. Reinforcement learning (RL) methods have demonstrated superhuman performance on the macro placement. In this paper, we propose an extension to this prior work [1]. We first describe the details of the policy and value network architecture. We replace the force-directed method with DREAMPlace for placing standard cells in the RL environment. We also compare our improved method with other academic placers on public benchmarks.
用强化学习深入研究宏观布局
在物理设计中,人类设计师通常通过试错来放置宏,这是一个马尔可夫决策过程。强化学习(RL)方法在宏观布局上表现出了超人的性能。在本文中,我们提出了对先前工作[1]的扩展。我们首先描述了策略和价值网络架构的细节。我们用DREAMPlace取代了力导向方法,将标准细胞放置在RL环境中。我们还将改进后的方法与公共基准上的其他学术排名方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信