Optimal Measurement Placement for Power System State Estimation Using Hybrid Genetic Algorithm and Simulated Annealing

T. Kerdchuen, W. Ongsakul
{"title":"Optimal Measurement Placement for Power System State Estimation Using Hybrid Genetic Algorithm and Simulated Annealing","authors":"T. Kerdchuen, W. Ongsakul","doi":"10.1109/ICPST.2006.321730","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid genetic algorithm and simulated annealing (GA/SA) for solving optimal measurement placement for power system state estimation. Even though the global minimum measurement pair number is (N- 1) , their positions are required to make the system observable. GA/SA algorithm is based on genetic algorithm (GA) process. The acceptance criterion of simulated annealing (SA) is used for chromosome selection. Single measurement pair loss contingency is also considered. The Pthetas observable concept is used to check the network observability. Test results of 10-bus, IEEE 14, 30, 57 and 118-bus systems indicate that GA/SA is superior to tabu search (TS), GA and SA in terms of higher frequency of the best hit and faster computational time.","PeriodicalId":181574,"journal":{"name":"2006 International Conference on Power System Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Power System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST.2006.321730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposes a hybrid genetic algorithm and simulated annealing (GA/SA) for solving optimal measurement placement for power system state estimation. Even though the global minimum measurement pair number is (N- 1) , their positions are required to make the system observable. GA/SA algorithm is based on genetic algorithm (GA) process. The acceptance criterion of simulated annealing (SA) is used for chromosome selection. Single measurement pair loss contingency is also considered. The Pthetas observable concept is used to check the network observability. Test results of 10-bus, IEEE 14, 30, 57 and 118-bus systems indicate that GA/SA is superior to tabu search (TS), GA and SA in terms of higher frequency of the best hit and faster computational time.
基于混合遗传算法和模拟退火的电力系统状态估计最优测量布置
本文提出了一种混合遗传算法和模拟退火算法(GA/SA)来解决电力系统状态估计的最优测量位置问题。即使全局最小测量对数为(N- 1),它们的位置也需要使系统可观测。GA/SA算法基于遗传算法(GA)过程。采用模拟退火(SA)接受准则进行染色体选择。还考虑了单测量对损失偶然性。Pthetas可观察性概念用于检查网络的可观察性。在10总线、IEEE 14、30、57和118总线系统上的测试结果表明,GA/SA在最佳命中频率更高和计算时间更快方面优于禁忌搜索(TS)、GA和SA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信