Silicon photonics WDM interconnects based on resonant ring modulators and semiconductor mode locked laser

J. Müller, J. Hauck, B. Shen, S. Romero-García, E. Islamova, S. Sharif Azadeh, S. Joshi, N. Chimot, A. Moscoso-Mártir, F. Merget, F. Lelarge, J. Witzens
{"title":"Silicon photonics WDM interconnects based on resonant ring modulators and semiconductor mode locked laser","authors":"J. Müller, J. Hauck, B. Shen, S. Romero-García, E. Islamova, S. Sharif Azadeh, S. Joshi, N. Chimot, A. Moscoso-Mártir, F. Merget, F. Lelarge, J. Witzens","doi":"10.1117/12.2080769","DOIUrl":null,"url":null,"abstract":"We demonstrate wavelength domain multiplexed (WDM) data transmission with a data rate of 14 Gbps based on optical carrier generation with a single-section semiconductor mode-locked laser (SS-MLL) and modulation with a Silicon Photonics (SiP) resonant ring modulator (RRM). 18 channels are sequentially measured, whereas the best recorded eye diagrams feature signal quality factors (Q-factors) above 7. While optical re-amplification was necessary to maintain the link budgets and therefore system measurements were performed with an erbium doped fiber amplifier (EDFA), preliminary characterization done with a semiconductor optical amplifier (SOA) indicates compatibility with the latter pending the integration of an additional optical filter to select a subset of carriers and prevent SOA saturation. A systematic analysis of the relative intensity noise (RIN) of isolated comb lines and of signal Q-factors indicates that the link is primarily limited by amplified spontaneous emission (ASE) from the EDFA rather than laser RIN. Measured RIN for single comb components is below -120 dBc/Hz in the range from 7 MHz to 4 GHz and drops to the shot noise level at higher frequencies.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Optoelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2080769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We demonstrate wavelength domain multiplexed (WDM) data transmission with a data rate of 14 Gbps based on optical carrier generation with a single-section semiconductor mode-locked laser (SS-MLL) and modulation with a Silicon Photonics (SiP) resonant ring modulator (RRM). 18 channels are sequentially measured, whereas the best recorded eye diagrams feature signal quality factors (Q-factors) above 7. While optical re-amplification was necessary to maintain the link budgets and therefore system measurements were performed with an erbium doped fiber amplifier (EDFA), preliminary characterization done with a semiconductor optical amplifier (SOA) indicates compatibility with the latter pending the integration of an additional optical filter to select a subset of carriers and prevent SOA saturation. A systematic analysis of the relative intensity noise (RIN) of isolated comb lines and of signal Q-factors indicates that the link is primarily limited by amplified spontaneous emission (ASE) from the EDFA rather than laser RIN. Measured RIN for single comb components is below -120 dBc/Hz in the range from 7 MHz to 4 GHz and drops to the shot noise level at higher frequencies.
基于谐振环调制器和半导体锁模激光器的硅光子WDM互连
我们演示了基于单段半导体锁模激光器(SS-MLL)的光载波生成和硅光子学(SiP)谐振环调制器(RRM)调制的数据速率为14 Gbps的波长域复用(WDM)数据传输。连续测量18个通道,而最佳记录的眼图特征是信号质量因子(q因子)大于7。虽然光再放大是维持链路预算所必需的,因此系统测量是用掺铒光纤放大器(EDFA)进行的,但用半导体光放大器(SOA)进行的初步表征表明,在集成额外的光滤波器以选择载波子集并防止SOA饱和之前,半导体光放大器(SOA)与后者的兼容性有待提高。对孤立梳状线的相对强度噪声(RIN)和信号q因子的系统分析表明,这种联系主要受到来自EDFA的放大自发发射(ASE)而不是激光RIN的限制。在7mhz至4ghz范围内,单个梳状元件的测量RIN低于- 120dbc /Hz,在更高频率下降至射击噪声水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信