A novel approach to neuro-sliding mode controllers for systems with unknown dynamics

Y. Yildiz, K. Abidi, A. Sabanoviç
{"title":"A novel approach to neuro-sliding mode controllers for systems with unknown dynamics","authors":"Y. Yildiz, K. Abidi, A. Sabanoviç","doi":"10.1109/ICIT.2003.1290312","DOIUrl":null,"url":null,"abstract":"In this paper we propose a neural network controller, which has a single neuron with a linear activation function, namely adaline, which uses backpropagation algorithm for online training and works as a sliding mode controller which pushes the system to a certain sliding manifold. We prove that the controller is robust to parameter changes and to the uncertainties in the disturbance and the system is always stable with zero steady state error for bounded disturbance. Different from the works done until now, in this work we do not deal with the estimation of the equivalent control but instead, feeding an appropriate error function to the network and using backpropagation, i.e. gradient descent algorithm, we directly calculate the necessary control input. Initially a controller structure is proposed and in the proceeding sections an improved version is added. Simulation results are provided that verifies the success of the algorithm.","PeriodicalId":193510,"journal":{"name":"IEEE International Conference on Industrial Technology, 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Industrial Technology, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2003.1290312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we propose a neural network controller, which has a single neuron with a linear activation function, namely adaline, which uses backpropagation algorithm for online training and works as a sliding mode controller which pushes the system to a certain sliding manifold. We prove that the controller is robust to parameter changes and to the uncertainties in the disturbance and the system is always stable with zero steady state error for bounded disturbance. Different from the works done until now, in this work we do not deal with the estimation of the equivalent control but instead, feeding an appropriate error function to the network and using backpropagation, i.e. gradient descent algorithm, we directly calculate the necessary control input. Initially a controller structure is proposed and in the proceeding sections an improved version is added. Simulation results are provided that verifies the success of the algorithm.
未知动态系统神经滑模控制器的新方法
在本文中,我们提出了一种神经网络控制器,它具有一个线性激活函数,即adaline,它使用反向传播算法进行在线训练,并作为滑模控制器将系统推向某个滑动流形。证明了该控制器对参数变化和扰动中的不确定性具有鲁棒性,对有界扰动系统始终稳定,稳态误差为零。与目前所做的工作不同,在这项工作中,我们不处理等效控制的估计,而是向网络提供适当的误差函数,并使用反向传播,即梯度下降算法,直接计算必要的控制输入。最初提出了一个控制器结构,并在接下来的章节中添加了一个改进版本。仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信