Maximum Power Point Tracking of PV Systems Using TFPSO

Chin-Tan Lee, Jye-Ren Deng, Bo-Rui Su, Ko-Wei Weng, Chia-Chun Wu
{"title":"Maximum Power Point Tracking of PV Systems Using TFPSO","authors":"Chin-Tan Lee, Jye-Ren Deng, Bo-Rui Su, Ko-Wei Weng, Chia-Chun Wu","doi":"10.1109/ICICE.2017.8478937","DOIUrl":null,"url":null,"abstract":"This paper proposes Taguchi Fuzzy Particle Swarm Optimization (TFPSO), and develops a buck converter as the Maximum Power Point Tracker (MPPT) for the photovoltaic (PV) system. The method proposed in this paper can automatically judge the buck mode of this buck converter, in order that the PV panel can implement maximum power output in ideal environments or partially shaded conditions (PSC). First, the Taguchi method is used for the optimization training of the influencing parameters of Fuzzy Particle Swarm Optimization (PSO), and the optimum parameters are obtained from the tracking of the precision-tracking speed trade-off. Afterwards, Matlab/simulink simulation experiments, single-peak power curve, two-peak power curve, three-peak power curve, and computer simulation in different atmospheric environments are conducted. Finally, the fuzzy PSO, PSO, and Perturbation and Observation (P&O) are used for comparison. The results show that TFPSO has the best performance in unimodal and multimodal power curves.","PeriodicalId":233396,"journal":{"name":"2017 International Conference on Information, Communication and Engineering (ICICE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Information, Communication and Engineering (ICICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICE.2017.8478937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes Taguchi Fuzzy Particle Swarm Optimization (TFPSO), and develops a buck converter as the Maximum Power Point Tracker (MPPT) for the photovoltaic (PV) system. The method proposed in this paper can automatically judge the buck mode of this buck converter, in order that the PV panel can implement maximum power output in ideal environments or partially shaded conditions (PSC). First, the Taguchi method is used for the optimization training of the influencing parameters of Fuzzy Particle Swarm Optimization (PSO), and the optimum parameters are obtained from the tracking of the precision-tracking speed trade-off. Afterwards, Matlab/simulink simulation experiments, single-peak power curve, two-peak power curve, three-peak power curve, and computer simulation in different atmospheric environments are conducted. Finally, the fuzzy PSO, PSO, and Perturbation and Observation (P&O) are used for comparison. The results show that TFPSO has the best performance in unimodal and multimodal power curves.
基于TFPSO的光伏系统最大功率点跟踪
本文提出了田口模糊粒子群优化算法(TFPSO),并开发了一种buck变换器作为光伏系统的最大功率点跟踪器(MPPT)。本文提出的方法可以自动判断该降压变换器的降压模式,从而使光伏板在理想环境或部分遮阳条件下实现最大功率输出。首先,利用田口法对模糊粒子群算法(PSO)的影响参数进行优化训练,通过跟踪精度和跟踪速度的权衡得到最优参数;随后进行了Matlab/simulink仿真实验、单峰功率曲线、双峰功率曲线、三峰功率曲线以及不同大气环境下的计算机仿真。最后,采用模糊粒子群算法、粒子群算法和扰动与观测算法进行比较。结果表明,TFPSO在单峰功率曲线和多峰功率曲线上均具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信