A 1.93TOPS/W Deep Learning Processor with a Reconfigurable Processing Element Array Based on SRAM Access Optimization

Liao-Chuan Chen, Zhaofang Li, Yi-Jhen Lin, Kuang Lee, K. Tang
{"title":"A 1.93TOPS/W Deep Learning Processor with a Reconfigurable Processing Element Array Based on SRAM Access Optimization","authors":"Liao-Chuan Chen, Zhaofang Li, Yi-Jhen Lin, Kuang Lee, K. Tang","doi":"10.1109/APCCAS55924.2022.10090334","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks feature numerous parameters, causing data movement to usually dominate the power consumed when computing inferences. This paper proposes an on-chip buffer access optimization method and high-data-reuse architecture that can reduce the power consumed by an on-chip buffer by up to 67.8%. The chip is designed in a TSMC 40 nm process running at 200 MHz and achieves energy efficiency of 1.93 TOPS/W.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"2002 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep convolutional neural networks feature numerous parameters, causing data movement to usually dominate the power consumed when computing inferences. This paper proposes an on-chip buffer access optimization method and high-data-reuse architecture that can reduce the power consumed by an on-chip buffer by up to 67.8%. The chip is designed in a TSMC 40 nm process running at 200 MHz and achieves energy efficiency of 1.93 TOPS/W.
基于SRAM访问优化的可重构处理单元阵列1.93TOPS/W深度学习处理器
深度卷积神经网络具有众多参数,导致数据移动通常在计算推理时占据主导地位。本文提出了一种片上缓冲器访问优化方法和高数据重用架构,可将片上缓冲器功耗降低67.8%。该芯片采用台积电40纳米工艺设计,运行频率为200 MHz,能量效率为1.93 TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信