An Investigation of Ensemble Methods to Classify Electroencephalogram Signaling Modes

Hoang-Thuy-Tien Vo, V. Q. Huynh, Tuan Van Huynh
{"title":"An Investigation of Ensemble Methods to Classify Electroencephalogram Signaling Modes","authors":"Hoang-Thuy-Tien Vo, V. Q. Huynh, Tuan Van Huynh","doi":"10.1109/NICS51282.2020.9335883","DOIUrl":null,"url":null,"abstract":"This research focuses on the feasibility of synthetic algorithms, including Boosted Trees, Bagged Trees, Subspace KNN, Subspace Discriminant, RUSBoosted Trees for identifying brain wave signal patterns. With two datasets used, it is the one that measures the four types of human emotions (valence, arousal, dominance, like). The receiver consists of 11 states composed of the groups of facial, normal, and thinking signals. The research focuses on researching the above algorithms, using the wavelet transform to determine the signal's characteristics, then classifying, comparing the results, improving, and reaching a conclusion.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This research focuses on the feasibility of synthetic algorithms, including Boosted Trees, Bagged Trees, Subspace KNN, Subspace Discriminant, RUSBoosted Trees for identifying brain wave signal patterns. With two datasets used, it is the one that measures the four types of human emotions (valence, arousal, dominance, like). The receiver consists of 11 states composed of the groups of facial, normal, and thinking signals. The research focuses on researching the above algorithms, using the wavelet transform to determine the signal's characteristics, then classifying, comparing the results, improving, and reaching a conclusion.
脑电信号信号模式分类的集成方法研究
本文主要研究了增强树、Bagged树、子空间KNN、子空间Discriminant、rusboosting树等综合算法识别脑波信号模式的可行性。使用了两个数据集,其中一个测量了四种人类情绪(效价、唤醒、支配等)。接收器由11个状态组成,这些状态由面部、正常和思维信号组组成。本文的研究重点是对上述算法进行研究,利用小波变换确定信号的特征,然后进行分类,比较结果,改进,得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信