Estimation of Motion Parameters Using 2-D Lines without Correspondences Based on Virtual Electric Potential Model

B. Bouda, L. Masmoudi, B. Chaouki, D. Aboutajdine
{"title":"Estimation of Motion Parameters Using 2-D Lines without Correspondences Based on Virtual Electric Potential Model","authors":"B. Bouda, L. Masmoudi, B. Chaouki, D. Aboutajdine","doi":"10.1109/ISCIII.2007.367359","DOIUrl":null,"url":null,"abstract":"This paper addresses the estimation problem of the motion parameters using 2D lines without correspondences. The method is based on two main ideas. The first one consists to model the image as grid of the virtual electric potential and to exploit the corners detected by an improved version of Harris and Stephens detector. Characteristic of gradient vectors at the corners detected is used in order to draw the strait lines. The second one uses the invariance property of the correlation matrix eigenstructure decomposition. The correlation matrix is formulated from the directing vectors of the straight lines. To determine the correspondence between the lines and to remove the outliers we use an affinity function based on a heuristic criterion. The performances of the method are degraded considerably in presence of noise. For this reason, a preprocessing stage is suitable. It consists to estimate the noise correlation matrix by evaluating iteratively the noise subspace in order to improve the signal noise ratio (SNR). The robustness of the method to the noise and the outliers is remarkable in synthetic or real images.","PeriodicalId":314768,"journal":{"name":"2007 International Symposium on Computational Intelligence and Intelligent Informatics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIII.2007.367359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the estimation problem of the motion parameters using 2D lines without correspondences. The method is based on two main ideas. The first one consists to model the image as grid of the virtual electric potential and to exploit the corners detected by an improved version of Harris and Stephens detector. Characteristic of gradient vectors at the corners detected is used in order to draw the strait lines. The second one uses the invariance property of the correlation matrix eigenstructure decomposition. The correlation matrix is formulated from the directing vectors of the straight lines. To determine the correspondence between the lines and to remove the outliers we use an affinity function based on a heuristic criterion. The performances of the method are degraded considerably in presence of noise. For this reason, a preprocessing stage is suitable. It consists to estimate the noise correlation matrix by evaluating iteratively the noise subspace in order to improve the signal noise ratio (SNR). The robustness of the method to the noise and the outliers is remarkable in synthetic or real images.
基于虚电位模型的二维无对应线运动参数估计
本文解决了二维直线无对应运动参数估计问题。该方法基于两个主要思想。第一种方法是将图像建模为虚拟电位的网格,并利用改进版的哈里斯和斯蒂芬斯检测器检测到的角。利用检测到的拐角处梯度向量的特征来绘制海峡线。第二种方法利用了相关矩阵特征结构分解的不变性。相关矩阵由直线的方向向量组成。为了确定线之间的对应关系并去除异常值,我们使用基于启发式准则的亲和函数。在噪声存在的情况下,该方法的性能明显下降。出于这个原因,预处理阶段是合适的。它包括通过对噪声子空间的迭代求值来估计噪声相关矩阵,以提高信噪比。在合成图像和真实图像中,该方法对噪声和异常值具有显著的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信