Naci Pekcokguler, M. Maman, A. Burg, C. Dehollain, D. Morche
{"title":"A Novel RF Spectrum Monitoring Architecture for an Ultra-Low-Power Wi-Fi Geopositioning System","authors":"Naci Pekcokguler, M. Maman, A. Burg, C. Dehollain, D. Morche","doi":"10.1109/NEWCAS50681.2021.9462768","DOIUrl":null,"url":null,"abstract":"Wireless radio consumes the highest power in many systems and must be activated wisely to save power especially in battery-powered systems. Hence, gathering insight into the spectrum activity is needed to control the wireless radio. In this work, classic full-band Fast Fourier Transform (FFT) and sequential digital spectrum scanning systems are presented with their high energy consumption and latency drawbacks. A context-aware, multi-layer-duty-cycled, multi-channel, ultra-low-power analog spectrum monitoring architecture is proposed as a solution to the drawbacks of the classic systems with the emphasis on Wi-Fi signal detection for a Basic Service Set Identifier (BSSID)-based geopositioning shipment tracking application. The proposed architecture provides more than 3 order of magnitude power saving in detection compared to the classic sequential spectrum scanning while maintaining the full functionality under vast variety of operating conditions.","PeriodicalId":373745,"journal":{"name":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS50681.2021.9462768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Wireless radio consumes the highest power in many systems and must be activated wisely to save power especially in battery-powered systems. Hence, gathering insight into the spectrum activity is needed to control the wireless radio. In this work, classic full-band Fast Fourier Transform (FFT) and sequential digital spectrum scanning systems are presented with their high energy consumption and latency drawbacks. A context-aware, multi-layer-duty-cycled, multi-channel, ultra-low-power analog spectrum monitoring architecture is proposed as a solution to the drawbacks of the classic systems with the emphasis on Wi-Fi signal detection for a Basic Service Set Identifier (BSSID)-based geopositioning shipment tracking application. The proposed architecture provides more than 3 order of magnitude power saving in detection compared to the classic sequential spectrum scanning while maintaining the full functionality under vast variety of operating conditions.