Younggeun Choi, Shin-Young Cheong, N. Schweighofer
{"title":"Local Online Support Vector Regression for Learning Control","authors":"Younggeun Choi, Shin-Young Cheong, N. Schweighofer","doi":"10.1109/CIRA.2007.382883","DOIUrl":null,"url":null,"abstract":"Support vector regression (SVR) is a class of machine learning technique that has been successfully applied to low-level learning control in robotics. Because of the large amount of computation required by SVR, however, most studies have used a batch mode. Although a recently developed online form of SVR shows faster learning performance than batch SVR, the amount of computation required by online SVR prevent its use in real-time robot learning control, which requires short sampling time. Here, we present a novel method, Local online SVR for Learning control, or LoSVR, that extends online SVR with a windowing method. We demonstrate the performance of LoSVR in learning the inverse dynamics of both a simulated two-joint robot and a real one-link robot arm. Our results show that, in both cases, LoSVR can learn the inverse dynamics on-line faster and with a better accuracy than batch SVR.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Support vector regression (SVR) is a class of machine learning technique that has been successfully applied to low-level learning control in robotics. Because of the large amount of computation required by SVR, however, most studies have used a batch mode. Although a recently developed online form of SVR shows faster learning performance than batch SVR, the amount of computation required by online SVR prevent its use in real-time robot learning control, which requires short sampling time. Here, we present a novel method, Local online SVR for Learning control, or LoSVR, that extends online SVR with a windowing method. We demonstrate the performance of LoSVR in learning the inverse dynamics of both a simulated two-joint robot and a real one-link robot arm. Our results show that, in both cases, LoSVR can learn the inverse dynamics on-line faster and with a better accuracy than batch SVR.