{"title":"Synthesis of Data-Parallel Algorithms for Programmable Logic Devices","authors":"I. Damaj","doi":"10.1109/ICCRD.2010.65","DOIUrl":null,"url":null,"abstract":"Behavioral high-level hardware design tools are currently considered powerful and can largely facilitate the hardware development cycle as a whole. Modern hardware design tools can target high-density programmable logic devices, such as, Field Programmable Gate Arrays. Currently, hardware/software co-design is witnessing a growing focus on finding alternative methods that could further improve the design process. In this paper, we explore the effectiveness and extend a formal methodology for hardware design. The method adopts a a step-wise refinement approach that starts development from formal specifications. A functional programming notation is used for specifying algorithms and for reasoning about them. The method is aided by off-the-shelf refinements based on the operators of Communicating Sequential Processes that map easily to programs written in Handel-C. Handel-C descriptions are directly compiled into reconfigurable hardware. The practical realization of this methodology is evidenced by a case studying data-parallel implementations of a matrix multiplication algorithm. The developed designs are compiled and tested under Agility's RC-1000 reconfigurable computer with its 2 million gates Virtex-E FPGA. Performance analysis and evaluation of the presented implementations are included.","PeriodicalId":158568,"journal":{"name":"2010 Second International Conference on Computer Research and Development","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRD.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Behavioral high-level hardware design tools are currently considered powerful and can largely facilitate the hardware development cycle as a whole. Modern hardware design tools can target high-density programmable logic devices, such as, Field Programmable Gate Arrays. Currently, hardware/software co-design is witnessing a growing focus on finding alternative methods that could further improve the design process. In this paper, we explore the effectiveness and extend a formal methodology for hardware design. The method adopts a a step-wise refinement approach that starts development from formal specifications. A functional programming notation is used for specifying algorithms and for reasoning about them. The method is aided by off-the-shelf refinements based on the operators of Communicating Sequential Processes that map easily to programs written in Handel-C. Handel-C descriptions are directly compiled into reconfigurable hardware. The practical realization of this methodology is evidenced by a case studying data-parallel implementations of a matrix multiplication algorithm. The developed designs are compiled and tested under Agility's RC-1000 reconfigurable computer with its 2 million gates Virtex-E FPGA. Performance analysis and evaluation of the presented implementations are included.