Xiangjian He, W. Jia, Qiang Wu, N. Hur, T. Hintz, Huaqing Wang, Jinwoong Kim
{"title":"Basic Transformations on Virtual Hexagonal Structure","authors":"Xiangjian He, W. Jia, Qiang Wu, N. Hur, T. Hintz, Huaqing Wang, Jinwoong Kim","doi":"10.1109/CGIV.2006.28","DOIUrl":null,"url":null,"abstract":"Hexagonal structure is different from the traditional square structure for image representation. The geometrical arrangement of pixels on hexagonal structure can be described in terms of a hexagonal grid. Hexagonal structure provides an easy way for image translation and rotation transformations. However, all the existing hardware for capturing image and for displaying image are produced based on square architecture. It has become a serious problem affecting the advanced research based on hexagonal structure. In this paper, we introduce a new virtual hexagonal structure. Based on this virtual structure, a more flexible and powerful image translation and rotation are performed. The virtual hexagonal structure retains image resolution during the process of image transformations, and does not introduce distortion. Furthermore, images can be smoothly and easily transferred between the traditional square structure and the hexagonal structure","PeriodicalId":264596,"journal":{"name":"International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2006.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Hexagonal structure is different from the traditional square structure for image representation. The geometrical arrangement of pixels on hexagonal structure can be described in terms of a hexagonal grid. Hexagonal structure provides an easy way for image translation and rotation transformations. However, all the existing hardware for capturing image and for displaying image are produced based on square architecture. It has become a serious problem affecting the advanced research based on hexagonal structure. In this paper, we introduce a new virtual hexagonal structure. Based on this virtual structure, a more flexible and powerful image translation and rotation are performed. The virtual hexagonal structure retains image resolution during the process of image transformations, and does not introduce distortion. Furthermore, images can be smoothly and easily transferred between the traditional square structure and the hexagonal structure