Features Extraction from ECG Signals Using Unbiased FIR Filtering

C. Lastre-Dominguez, Y. Shmaliy, O. Ibarra-Manzano, L. Morales-Mendoza
{"title":"Features Extraction from ECG Signals Using Unbiased FIR Filtering","authors":"C. Lastre-Dominguez, Y. Shmaliy, O. Ibarra-Manzano, L. Morales-Mendoza","doi":"10.1109/MICAI-2017.2017.00019","DOIUrl":null,"url":null,"abstract":"An electrocardiogram (ECG) is a record of heart wave patterns, which is used to identify abnormalities related to the electrical activities of the heart. In this paper, we discuss applications of the unbiased finite impulse response (UFIR) estimation approach to denoise the ECG measurements and extract useful features from. One of the standard methods providing denoising and extracting features of the ECG signals is based on the one-step prediction. We show that better accuracy can be obtained by using the UFIR filter and the UFIR smoothing filter with adaptive averaging horizon length. To study the trade-off between the predictive, filtering, and smoothing UFIR filtering algorithms, we employ the ECG data related to normal heart beating.","PeriodicalId":194566,"journal":{"name":"2017 Sixteenth Mexican International Conference on Artificial Intelligence (MICAI)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Sixteenth Mexican International Conference on Artificial Intelligence (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI-2017.2017.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An electrocardiogram (ECG) is a record of heart wave patterns, which is used to identify abnormalities related to the electrical activities of the heart. In this paper, we discuss applications of the unbiased finite impulse response (UFIR) estimation approach to denoise the ECG measurements and extract useful features from. One of the standard methods providing denoising and extracting features of the ECG signals is based on the one-step prediction. We show that better accuracy can be obtained by using the UFIR filter and the UFIR smoothing filter with adaptive averaging horizon length. To study the trade-off between the predictive, filtering, and smoothing UFIR filtering algorithms, we employ the ECG data related to normal heart beating.
利用无偏FIR滤波提取心电信号特征
心电图(ECG)是心波模式的记录,用于识别与心脏电活动相关的异常。本文讨论了无偏有限脉冲响应(UFIR)估计方法在心电测量降噪和提取有用特征中的应用。对心电信号进行去噪和特征提取的标准方法之一是基于一步预测。结果表明,采用UFIR滤波器和自适应平均水平长度的UFIR平滑滤波器可以获得更好的精度。为了研究预测、滤波和平滑UFIR滤波算法之间的权衡,我们使用了与正常心脏跳动相关的心电数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信