Influence Analysis in Online Social Networks Using Hypergraphs

F. Amato, Francesco di Lillo, V. Moscato, A. Picariello, Giancarlo Sperlí
{"title":"Influence Analysis in Online Social Networks Using Hypergraphs","authors":"F. Amato, Francesco di Lillo, V. Moscato, A. Picariello, Giancarlo Sperlí","doi":"10.1109/IRI.2017.72","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel data model for online social networks based on hypergraphs. We show how an influence analysis problem can be properly faced leveraging the introduced network structure. In particular, we implemented a bio-inspired maximization algorithm on the top of the hypergraph model, exploiting the concept of influential path. Preliminary experiments using data of several social networks show how our approach obtains very promising results and encourage the research in this direction.","PeriodicalId":254330,"journal":{"name":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2017.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we describe a novel data model for online social networks based on hypergraphs. We show how an influence analysis problem can be properly faced leveraging the introduced network structure. In particular, we implemented a bio-inspired maximization algorithm on the top of the hypergraph model, exploiting the concept of influential path. Preliminary experiments using data of several social networks show how our approach obtains very promising results and encourage the research in this direction.
利用超图分析在线社交网络的影响
本文描述了一种基于超图的在线社交网络数据模型。我们展示了如何利用引入的网络结构正确地面对影响分析问题。特别是,我们在超图模型的顶部实现了一种生物启发的最大化算法,利用了影响路径的概念。使用几个社交网络数据的初步实验表明,我们的方法获得了非常有希望的结果,并鼓励了这一方向的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信