{"title":"Measuring information in analyst reports: A machine learning approach","authors":"Charles Martineau, M. Zoican","doi":"10.2139/ssrn.3925176","DOIUrl":null,"url":null,"abstract":"How to quantify the informational content of analyst reports? In this short methodological paper, we propose a measure of information contribution (IC), defined in the spirit of Shapley values. We use natural language processing to identify topics for over 90,000 analyst reports for S&P 500 stocks between January 2018 to May 2020. Next, we build the IC measure as the average cosine distance between the topic distribution for a particular report and any subset of competitor reports. A first preliminary finding is that the informational content of reports in \"crowded stocks\" is 41% lower than for reports in low-coverage stocks. Second, team-authored reports are 36% more informative than individual reports and women-authored reports are 12% more informative than men-authored reports.","PeriodicalId":202880,"journal":{"name":"Research Methods & Methodology in Accounting eJournal","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods & Methodology in Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3925176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
How to quantify the informational content of analyst reports? In this short methodological paper, we propose a measure of information contribution (IC), defined in the spirit of Shapley values. We use natural language processing to identify topics for over 90,000 analyst reports for S&P 500 stocks between January 2018 to May 2020. Next, we build the IC measure as the average cosine distance between the topic distribution for a particular report and any subset of competitor reports. A first preliminary finding is that the informational content of reports in "crowded stocks" is 41% lower than for reports in low-coverage stocks. Second, team-authored reports are 36% more informative than individual reports and women-authored reports are 12% more informative than men-authored reports.