H. Kim, John Kim, Woong Seo, Yeon-Gon Cho, Soojung Ryu
{"title":"Providing cost-effective on-chip network bandwidth in GPGPUs","authors":"H. Kim, John Kim, Woong Seo, Yeon-Gon Cho, Soojung Ryu","doi":"10.1109/ICCD.2012.6378671","DOIUrl":null,"url":null,"abstract":"Network-on-chip (NoC) bandwidth has a significant impact on overall performance in throughput-oriented processors such as GPG-PUs. Although it has been commonly assumed that high NoC bandwidth can be provided through abundant on-chip wires, we show that increasing NoC router frequency results in a more cost-effective NoC. However, router arbitration critical path can limit the NoC router frequency. Thus, we propose a direct all-to-all network overlaid on mesh (DA2mesh) NoC architecture that exploits the traffic characteristics of GPGPU and removes arbitration from the router pipeline. DA2mesh simplifies the router pipeline with 36% improvement of performance while reducing NoC energy by 15%.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Network-on-chip (NoC) bandwidth has a significant impact on overall performance in throughput-oriented processors such as GPG-PUs. Although it has been commonly assumed that high NoC bandwidth can be provided through abundant on-chip wires, we show that increasing NoC router frequency results in a more cost-effective NoC. However, router arbitration critical path can limit the NoC router frequency. Thus, we propose a direct all-to-all network overlaid on mesh (DA2mesh) NoC architecture that exploits the traffic characteristics of GPGPU and removes arbitration from the router pipeline. DA2mesh simplifies the router pipeline with 36% improvement of performance while reducing NoC energy by 15%.