Improvement of FTJ on-current by work function engineering for massive parallel neuromorphic computing

S. Lancaster, Q. Duong, E. Covi, T. Mikolajick, S. Slesazeck
{"title":"Improvement of FTJ on-current by work function engineering for massive parallel neuromorphic computing","authors":"S. Lancaster, Q. Duong, E. Covi, T. Mikolajick, S. Slesazeck","doi":"10.1109/ESSCIRC55480.2022.9911392","DOIUrl":null,"url":null,"abstract":"HfO2-based ferroelectric tunnel junctions (FTJs) exhibit attractive properties for adoption in neuromorphic applications. The combination of ultra-low-power multi-level switching capability together with the low on-current density suggests the application in circuits for massive parallel computation. In this work, we discuss one example circuit of a differential synaptic cell featuring multiple parallel connected FTJ devices. Moreover, from the circuit requirements we deduce that the absolute difference in currents $I_{on}-\\mathrm{I}_{off}$ is a more critical figure of merit than the tunneling electroresistance ratio (TER). Based on this, we discuss the potential of FTJ device optimization by means of electrode work function engineering in bilayer HZO/Al2O3FTJs.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

HfO2-based ferroelectric tunnel junctions (FTJs) exhibit attractive properties for adoption in neuromorphic applications. The combination of ultra-low-power multi-level switching capability together with the low on-current density suggests the application in circuits for massive parallel computation. In this work, we discuss one example circuit of a differential synaptic cell featuring multiple parallel connected FTJ devices. Moreover, from the circuit requirements we deduce that the absolute difference in currents $I_{on}-\mathrm{I}_{off}$ is a more critical figure of merit than the tunneling electroresistance ratio (TER). Based on this, we discuss the potential of FTJ device optimization by means of electrode work function engineering in bilayer HZO/Al2O3FTJs.
面向大规模并行神经形态计算的功函数工程改进FTJ导通电流
基于hfo2的铁电隧道结(ftj)在神经形态应用中表现出诱人的特性。超低功耗多级开关能力和低导通电流密度的结合为大规模并行计算电路提供了应用前景。在这项工作中,我们讨论了一个具有多个并联FTJ器件的差分突触细胞电路的示例。此外,根据电路要求,我们推断出电流的绝对差值$I {on}-\ maththrm {I} {off}$是比隧穿电阻比(TER)更重要的价值数字。在此基础上,讨论了利用双层HZO/Al2O3FTJs电极功函数工程优化FTJ器件的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信