Learning a human-perceived softness measure of virtual 3D objects

Manfred Lau, K. Dev, Julie Dorsey, H. Rushmeier
{"title":"Learning a human-perceived softness measure of virtual 3D objects","authors":"Manfred Lau, K. Dev, Julie Dorsey, H. Rushmeier","doi":"10.1145/2931002.2931019","DOIUrl":null,"url":null,"abstract":"We introduce the problem of computing a human-perceived softness measure for virtual 3D objects. As the virtual objects do not exist in the real world, we do not directly consider their physical properties but instead compute the human-perceived softness of the geometric shapes. We collect crowdsourced data where humans rank their perception of the softness of vertex pairs on virtual 3D models. We then compute shape descriptors and use a learning-to-rank approach to learn a softness measure mapping any vertex to a softness value. Finally, we demonstrate our framework with a variety of 3D shapes.","PeriodicalId":102213,"journal":{"name":"Proceedings of the ACM Symposium on Applied Perception","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2931002.2931019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We introduce the problem of computing a human-perceived softness measure for virtual 3D objects. As the virtual objects do not exist in the real world, we do not directly consider their physical properties but instead compute the human-perceived softness of the geometric shapes. We collect crowdsourced data where humans rank their perception of the softness of vertex pairs on virtual 3D models. We then compute shape descriptors and use a learning-to-rank approach to learn a softness measure mapping any vertex to a softness value. Finally, we demonstrate our framework with a variety of 3D shapes.
学习人类感知的虚拟三维物体的柔软度测量
我们介绍了计算虚拟三维物体的人类感知柔软度的问题。由于虚拟物体不存在于现实世界中,我们不直接考虑它们的物理特性,而是计算人类感知的几何形状的柔软度。我们收集众包数据,其中人类对虚拟3D模型上顶点对的柔软度的感知进行排名。然后我们计算形状描述符,并使用学习排序方法来学习将任何顶点映射到柔软度值的柔软度度量。最后,我们用各种3D形状演示了我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信