Path-finding using reinforcement learning and affective states

Johannes Feldmaier, K. Diepold
{"title":"Path-finding using reinforcement learning and affective states","authors":"Johannes Feldmaier, K. Diepold","doi":"10.1109/ROMAN.2014.6926309","DOIUrl":null,"url":null,"abstract":"During decision making and acting in the environment humans appraise decisions and observations with feelings and emotions. In this paper we propose a framework to incorporate an emotional model into the decision making process of a machine learning agent. We use a hierarchical structure to combine reinforcement learning with a dimensional emotional model. The dimensional model calculates two dimensions representing the actual affective state of the autonomous agent. For the evaluation of this combination, we use a reinforcement learning experiment (called Dyna Maze) in which, the agent has to find an optimal path through a maze. Our first results show that the agent is able to appraise the situation in terms of emotions and react according to them.","PeriodicalId":235810,"journal":{"name":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2014.6926309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

During decision making and acting in the environment humans appraise decisions and observations with feelings and emotions. In this paper we propose a framework to incorporate an emotional model into the decision making process of a machine learning agent. We use a hierarchical structure to combine reinforcement learning with a dimensional emotional model. The dimensional model calculates two dimensions representing the actual affective state of the autonomous agent. For the evaluation of this combination, we use a reinforcement learning experiment (called Dyna Maze) in which, the agent has to find an optimal path through a maze. Our first results show that the agent is able to appraise the situation in terms of emotions and react according to them.
使用强化学习和情感状态的寻路
在做出决策和在环境中行动的过程中,人类用感觉和情绪来评估决策和观察。在本文中,我们提出了一个框架,将情感模型纳入机器学习代理的决策过程。我们使用层次结构将强化学习与维度情感模型相结合。维度模型计算两个维度,表示自治代理的实际情感状态。为了评估这种组合,我们使用了一个强化学习实验(称为Dyna Maze),在这个实验中,智能体必须在迷宫中找到一条最优路径。我们的第一个结果表明,代理能够根据情绪来评估情况,并根据情绪做出反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信