III-V MOSFETs for Digital Applications with Silicon Co-Integration

K. Kalna, Asen Asenov, J. S. Ayubi-Moak, A. Craven, Ravi Droopad, R. Hill, M. Holland, Xu Li, A. R. Long, Paolo Longo, D. Macintyre, M. Passlack, G. Paterson, C. R. Stanley, S. Thoms, Haiping Zhou, I. Thayne
{"title":"III-V MOSFETs for Digital Applications with Silicon Co-Integration","authors":"K. Kalna, Asen Asenov, J. S. Ayubi-Moak, A. Craven, Ravi Droopad, R. Hill, M. Holland, Xu Li, A. R. Long, Paolo Longo, D. Macintyre, M. Passlack, G. Paterson, C. R. Stanley, S. Thoms, Haiping Zhou, I. Thayne","doi":"10.1109/ASDAM.2008.4743354","DOIUrl":null,"url":null,"abstract":"The prospect for the introduction of III-V semiconductors into the channel of n-type MOSFETs and thus replace Si with a high mobility material for 22 nm technology generation and beyond is examined in detail. The so-called implantfree (IF) III-V MOSFET architecture option is presented showing a fabricated n-type IF demonstrator suitable for scaling. We then focus on a prediction of the potential performance of III-V MOSFETs through physically-based Monte Carlo (MC) device simulations. An implanted, n-type III-V MOSFETs based on In0.3Ga0.7As channel is investigated when scaled from a gate length of 30 nm to 20 nm and 15 nm. The impact of decisive scattering mechanisms operative at the dielectric/semiconductor interface is discussed. We also simulate the IF devices with low (In0.3Ga0.7As) and high (In0.75Ga0.25As) Indium content channel scaled to gate lengths of 30, 20 and 15 nm with equivalent layer thicknesses. The IF architecture is found to deliver a high drive current because of the highly efficient injection of electrons into the channel and because of very low access resistances. However, the low Indium content channel IF transistor is not able to further increase its drive current when scaled to the 15 nm gate length. Therefore, we examine also the performance of high indium channel transistors which delivers a steady increase in the device performance down to the 15 nm gate length.","PeriodicalId":306699,"journal":{"name":"2008 International Conference on Advanced Semiconductor Devices and Microsystems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Advanced Semiconductor Devices and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASDAM.2008.4743354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The prospect for the introduction of III-V semiconductors into the channel of n-type MOSFETs and thus replace Si with a high mobility material for 22 nm technology generation and beyond is examined in detail. The so-called implantfree (IF) III-V MOSFET architecture option is presented showing a fabricated n-type IF demonstrator suitable for scaling. We then focus on a prediction of the potential performance of III-V MOSFETs through physically-based Monte Carlo (MC) device simulations. An implanted, n-type III-V MOSFETs based on In0.3Ga0.7As channel is investigated when scaled from a gate length of 30 nm to 20 nm and 15 nm. The impact of decisive scattering mechanisms operative at the dielectric/semiconductor interface is discussed. We also simulate the IF devices with low (In0.3Ga0.7As) and high (In0.75Ga0.25As) Indium content channel scaled to gate lengths of 30, 20 and 15 nm with equivalent layer thicknesses. The IF architecture is found to deliver a high drive current because of the highly efficient injection of electrons into the channel and because of very low access resistances. However, the low Indium content channel IF transistor is not able to further increase its drive current when scaled to the 15 nm gate length. Therefore, we examine also the performance of high indium channel transistors which delivers a steady increase in the device performance down to the 15 nm gate length.
基于硅协集成的数字应用mosfet
在n型mosfet通道中引入III-V半导体的前景,从而用高迁移率材料取代硅,用于22纳米技术的产生和超越。所谓的无植入(IF) III-V MOSFET架构选项展示了一个适合缩放的制造的n型IF演示器。然后,我们通过基于物理的蒙特卡罗(MC)器件模拟,重点预测III-V型mosfet的潜在性能。当栅极长度从30 nm缩放到20 nm和15 nm时,研究了基于In0.3Ga0.7As沟道的n型III-V型mosfet。讨论了介电/半导体界面上决定性散射机制的影响。我们还模拟了具有低铟含量通道(In0.3Ga0.7As)和高铟含量通道(In0.75Ga0.25As)的中频器件,其栅极长度分别为30、20和15 nm,层厚相等。中频架构可以提供高的驱动电流,因为它可以高效地将电子注入到通道中,并且接入电阻非常低。然而,低铟含量的沟道中频晶体管在缩放到15nm栅极长度时不能进一步增加其驱动电流。因此,我们还研究了高铟沟道晶体管的性能,它可以稳定地提高器件性能,直至15 nm栅极长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信