TFET-based Operational Transconductance Amplifier Design for CNN Systems

Qiuwen Lou, Indranil Palit, A. Horváth, X. Hu, M. Niemier, J. Nahas
{"title":"TFET-based Operational Transconductance Amplifier Design for CNN Systems","authors":"Qiuwen Lou, Indranil Palit, A. Horváth, X. Hu, M. Niemier, J. Nahas","doi":"10.1145/2742060.2742089","DOIUrl":null,"url":null,"abstract":"A Cellular Neural Network (CNN) is a powerful processor that can significantly improve the performance of spatio-temporal applications such as pattern recognition, image processing, motion detection, when compared to the more traditional von Neumann architecture. In this paper, we show how tunneling field effect transistors (TFETs) can be utilized to enhance the performance of CNNs. Specifically, power consumption of TFET-based CNNs can be significantly lower when compared to MOSFET-based CNNs due to improved voltage controlled current sources (VCCSs) - an important component in CNN systems. We demonstrate that CNNs can benefit from low power conventional linear VCCSs implemented via TFETs. We also show that TFETs can be useful to realize non-linear VCCSs, which are either not possible or exhibit degraded performance when implemented via CMOS. Such non-linear VCCSs help to improve the performance of certain CNN operations (e.g., global maximum/minimum). We provide two case studies - image contrast enhancement and maximum row selection - that illustrate the benefits of non-linear VCCSs (e.g., reduced computation time, energy dissipation, etc.) when compared to CMOS-based approaches.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A Cellular Neural Network (CNN) is a powerful processor that can significantly improve the performance of spatio-temporal applications such as pattern recognition, image processing, motion detection, when compared to the more traditional von Neumann architecture. In this paper, we show how tunneling field effect transistors (TFETs) can be utilized to enhance the performance of CNNs. Specifically, power consumption of TFET-based CNNs can be significantly lower when compared to MOSFET-based CNNs due to improved voltage controlled current sources (VCCSs) - an important component in CNN systems. We demonstrate that CNNs can benefit from low power conventional linear VCCSs implemented via TFETs. We also show that TFETs can be useful to realize non-linear VCCSs, which are either not possible or exhibit degraded performance when implemented via CMOS. Such non-linear VCCSs help to improve the performance of certain CNN operations (e.g., global maximum/minimum). We provide two case studies - image contrast enhancement and maximum row selection - that illustrate the benefits of non-linear VCCSs (e.g., reduced computation time, energy dissipation, etc.) when compared to CMOS-based approaches.
基于tfet的CNN系统运算跨导放大器设计
细胞神经网络(CNN)是一种功能强大的处理器,与传统的冯·诺伊曼架构相比,它可以显著提高时空应用的性能,如模式识别、图像处理、运动检测。在本文中,我们展示了如何利用隧道场效应晶体管(tfet)来增强cnn的性能。具体来说,与基于mosfet的CNN相比,基于tfet的CNN的功耗可以显著降低,这是由于改进了电压控制电流源(VCCSs)——CNN系统中的一个重要组成部分。我们证明了cnn可以受益于通过tfet实现的低功率传统线性vccs。我们还表明,tfet可以用于实现非线性vccs,这在通过CMOS实现时要么不可能实现,要么表现出性能下降。这种非线性vccs有助于提高某些CNN操作的性能(例如,全局最大值/最小值)。我们提供了两个案例研究-图像对比度增强和最大行选择-说明了非线性VCCSs与基于cmos的方法相比的好处(例如,减少计算时间,能量消耗等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信